112 research outputs found

    Reuse as heuristic : from transmission to nurture in learning activity design

    Get PDF
    In recent years a combination of ever more flexible and sophisticated Web technologies and an explosion in the quantity of online content has sparked learning technologists around the world to pursue the promise of the 'reusable learning object' or RLO with the idea that RLOs could be reused in different educational contexts, thereby providing greater overall flexibility and return on investment. In 2002 the ACETS Project undertook a three-year study in the UK to investigate whether RLOs worked in practice and how the pursuit of reuse affected the teacher and their teaching. Teachers working in healthcare-related subjects in Higher and Further Education were asked to create an original learning design or activity from third-party digital resources and to reflect both on the process and its outcomes. The expectation was that teachers would be the ones selecting and reusing third-party materials. This paper describes how one of the ACETS exemplifiers reinterpreted this remit, challenged the anticipated transmissive model of learning, and instead, gave their students an opportunity to create their own original learning designs and learning activities from third-party digital resources. By describing the educational enhancements, the resulting heightened levels of critical thinking, and sensitivity to patient needs, 'reuse' will be shown to be an effective heuristic for student self-direction and professional development

    Primary Invasive Aspergillosis of the Digestive Tract: Report of Two Cases and Review of the Literature

    Get PDF
    BACKGROUND: Disseminated aspergillosis is thought to occur as a result of vascular invasion from the lungs with subsequent bloodstream dissemination, and portals of entry other than sinuses and/or the respiratory tract remain speculative. METHODS: We report two cases of primary aspergillosis in the digestive tract and present a detailed review of eight of the 23 previously-published cases for which detailed data are available. RESULTS AND CONCLUSION: These ten cases presented with symptoms suggestive of typhlitis, with further peritonitis requiring laparotomy and small bowel segmental resection. All cases were characterized by the absence of pulmonary disease at the time of histologically-confirmed gastrointestinal involvement with vascular invasion by branched Aspergillus hyphae. These cases suggest that the digestive tract may represent a portal of entry for Aspergillus species in immunocompromised patients

    Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors

    Get PDF
    We have performed a search for bursts of gravitational waves associated with the very bright gamma ray burst GRB030329, using the two detectors at the LIGO Hanford Observatory. Our search covered the most sensitive frequency range of the LIGO detectors (approximately 80 - 2048 Hz), and we specifically targeted signals shorter than 150ms. Our search algorithm looks for excess correlated power between the two interferometers and thus makes minimal assumptions about the gravitational waveform. We observed no candidates with gravitational-wave signal strength larger than a predetermined threshold. We report frequency-dependent upper limits on the strength of the gravitational waves associated with GRB030329. Near the most sensitive frequency region, around 250Hz, our root-sum-square (RSS) gravitational-wave strain sensitivity for optimally polarized bursts was better than hRSS 6×10-21Hz-1/2. Our result is comparable to the best published results searching for association between gravitational waves and gamma ray bursts. © 2005 The American Physical Society

    Limits on gravitational-wave emission from selected pulsars using LIGO data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10-24. These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10-5 for the four closest pulsars. © 2005 The American Physical Society

    TIC 172900988: A transiting circumbinary planet detected in one sector of TESS data

    Get PDF
    We report the first discovery of a transiting circumbinary planet detected from a single sector of Transiting Exoplanet Survey Satellite (TESS) data. During Sector 21, the planet TIC 172900988b transited the primary star and then five days later it transited the secondary star. The binary is itself eclipsing, with a period P ≈ 19.7 days and an eccentricity e ≈ 0.45. Archival data from ASAS-SN, Evryscope, KELT, and SuperWASP reveal a prominent apsidal motion of the binary orbit, caused by the dynamical interactions between the binary and the planet. A comprehensive photodynamical analysis of the TESS, archival and follow-up data yields stellar masses and radii of M1 = 1.2384 ± 0.0007 Me and R1 = 1.3827 ± 0.0016 Re for the primary and M2 = 1.2019 ± 0.0007 Me and R2 = 1.3124 ± 0.0012 Re for the secondary. The radius of the planet is R3 = 11.25 ± 0.44 R (1.004 ± 0.039RJup). The planet's mass and orbital properties are not uniquely determined-there are six solutions with nearly equal likelihood. Specifically, we find that the planet's mass is in the range of 824 M3 981 M (2.65 M3 3.09MJup), its orbital period could be 188.8, 190.4, 194.0, 199.0, 200.4, or 204.1 days, and the eccentricity is between 0.02 and 0.09. At V = 10.141 mag, the system is accessible for high-resolution spectroscopic observations, e.g., the Rossiter-McLaughlin effect and transit spectroscopy

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore