1,061 research outputs found
Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism
The oscillation of tunnel splitting in the biaxial spin system within
magnetic field along the anisotropy axis is analyzed within the particle
mapping approach, rather than in the (\theta-\phi) spin coherent-state
representation. In our mapping procedure, the spin system is transformed into a
particle moving in the restricted geometry whose wave function subjects
to the boundary condition involving additional phase shift. We obtain the new
topological phase that plays the same role as the Wess-Zumino action in spin
coherent-state representation. Considering the interference of two possible
trajectories, instanton and anti-instanton, we get the identical condition for
the field at which tunneling is quenched, with the previous result within spin
coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Screened Coulomb interactions in metallic alloys: II Screening beyond the single-site and atomic sphere approximations
A quantitative description of the configurational part of the total energy of
metallic alloys with substantial atomic size difference cannot be achieved in
the atomic sphere approximation: It needs to be corrected at least for the
multipole moment interactions in the Madelung part of the one-electron
potential and energy. In the case of a random alloy such interactions can be
accounted for only by lifting the atomic sphere and single-site approximations,
in order to include the polarization due to local environment effects.
Nevertheless a simple parameterization of the screened Coulomb interactions for
the ordinary single-site methods, including the generalized perturbation
method, is still possible. We obtained such a parameterization for bulk and
surface NiPt alloys, which allows one to obtain quantitatively accurate
effective interactions in this system.Comment: 24 pages, 2 figure
Heat-kernels and functional determinants on the generalized cone
We consider zeta functions and heat-kernel expansions on the bounded,
generalized cone in arbitrary dimensions using an improved calculational
technique. The specific case of a global monopole is analysed in detail and
some restrictions thereby placed on the coefficient. The computation
of functional determinants is also addressed. General formulas are given and
known results are incidentally, and rapidly, reproduced.Comment: 26p,LaTeX.(Cosmetic changes and eqns (9.8),(11.2) corrected.
Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder
This is a review of ground-state features of the s=1/2 Heisenberg
antiferromagnet on two-dimensional lattices. A central issue is the interplay
of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor
bonds, geometric frustration) and quantum fluctuations and their impact on
possible long-range order. This article presents a unified summary of all 11
two-dimensional uniform Archimedean lattices which include e.g. the square,
triangular and kagome lattice. We find that the ground state of the spin-1/2
Heisenberg antiferromagnet is likely to be semi-classically ordered in most
cases. However, the interplay of geometric frustration and quantum fluctuations
gives rise to a quantum paramagnetic ground state without semi-classical
long-range order on two lattices which are precisely those among the 11 uniform
Archimedean lattices with a highly degenerate ground state in the classical
limit. The first one is the famous kagome lattice where many low-lying singlet
excitations are known to arise in the spin gap. The second lattice is called
star lattice and has a clear gap to all excitations.
Modification of certain bonds leads to quantum phase transitions which are
also discussed briefly. Furthermore, we discuss the magnetization process of
the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on
anomalies like plateaus and a magnetization jump just below the saturation
field. As an illustration we discuss the two-dimensional Shastry-Sutherland
model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review
article. This version corrects two further typographic errors (three total
with respect to the published version), see page 2 for detail
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Particle-yield modification in jet-like azimuthal di-hadron correlations in Pb-Pb collisions at = 2.76 TeV
The yield of charged particles associated with high- trigger
particles ( GeV/) is measured with the ALICE detector in
Pb-Pb collisions at = 2.76 TeV relative to proton-proton
collisions at the same energy. The conditional per-trigger yields are extracted
from the narrow jet-like correlation peaks in azimuthal di-hadron correlations.
In the 5% most central collisions, we observe that the yield of associated
charged particles with transverse momenta GeV/ on the
away-side drops to about 60% of that observed in pp collisions, while on the
near-side a moderate enhancement of 20-30% is found.Comment: 15 pages, 2 captioned figures, 1 table, authors from page 10,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/350
The COVID-19 Pandemic: Reflections of Science, Person, and Challenge in Academic Research Settings
In spring of 2021, the Society on NeuroImmune Pharmacology (SNIP) organized a virtual workshop on the coronavirus disease 2019 (COVID-19). The daylong event’s fourth and final symposium, “Well-being and reflections,” offered a glimpse at the pandemic’s impact on the lives of our scientists and educators. This manuscript includes a brief summary of the symposium, a transcription of our incoming president Dr. Santosh Kumar’s lecture, titled “Intervention and improved well-being of basic science researchers during the COVID-19 era: a case study,” and the panel discussion that followed, “Reflection and sharing,” featuring Drs. Jean M. Bidlack, Sylvia Fitting, Santhi Gorantla, Maria Cecilia G. Marcondes, Loyda M. Melendez, and Ilker K. Sariyer. The conclusion of this manuscript includes comments from SNIP’s president Dr. Sulie L. Chang and our Chief Editor, Dr. Howard E. Gendelman. Drs. Sowmya Yelamanchili and Jeymohan Joseph co-chaired the symposium
Studying monoids is not enough to study multiplicative properties of rings: an elementary approach
- …
