20 research outputs found
Spinor Field in Bianchi type-I Universe: regular solutions
Self-consistent solutions to the nonlinear spinor field equations in General
Relativity has been studied for the case of Bianchi type-I (B-I) space-time. It
has been shown that, for some special type of nonliearity the model provides
regular solution, but this singularity-free solutions are attained at the cost
of broken dominant energy condition in Hawking-Penrose theorem. It has also
been shown that the introduction of -term in the Lagrangian generates
oscillations of the B-I model, which is not the case in absence of
term. Moreover, for the linear spinor field, the term provides
oscillatory solutions, those are regular everywhere, without violating dominant
energy condition.
Key words: Nonlinear spinor field (NLSF), Bianch type -I model (B-I),
term
PACS 98.80.C CosmologyComment: RevTex, 21 page
The first dozen years of the history of ITEP Theoretical Physics Laboratory
The theoretical investigations at ITEP in the years 1945-1958 are reviewed.
There are exposed the most important theoretical results, obtained in the
following branches of physics: 1) the theory of nuclear reactors on thermal
neutrons; 2) the hydrogen bomb project ("Tube" in USSR and "Classical Super" in
USA); 3) radiation theory; ~4) low temperature physics; 5) quantum
electrodynamics and quantum field theories; 6) parity violation in weak
interactions, the theory of -decay and other weak processes; 7) strong
interaction and nuclear physics. To the review are added the English
translations of few papers, originally published in Russian, but unknown (or
almost unknown) to Western readers.Comment: 55 pages, 5 fig
Four-fermion interaction from torsion as dark energy
The observed small, positive cosmological constant may originate from a
four-fermion interaction generated by the spin-torsion coupling in the
Einstein-Cartan-Sciama-Kibble gravity if the fermions are condensing. In
particular, such a condensation occurs for quark fields during the
quark-gluon/hadron phase transition in the early Universe. We study how the
torsion-induced four-fermion interaction is affected by adding two terms to the
Dirac Lagrangian density: the parity-violating pseudoscalar density dual to the
curvature tensor and a spinor-bilinear scalar density which measures the
nonminimal coupling of fermions to torsion.Comment: 6 pages; published versio
A cyclic universe with colour fields
The topology of the universe is discussed in relation to the singularity
problem. We explore the possibility that the initial state of the universe
might have had a structure with 3-Klein bottle topology, which would lead to a
model of a nonsingular oscillating (cyclic) universe with a well-defined
boundary condition. The same topology is assumed to be intrinsic to the nature
of the hypothetical primitive constituents of matter (usually called preons)
giving rise to the observed variety of elementary particles. Some
phenomenological implications of this approach are also discussed.Comment: 21 pages, 9 figures; v.4: final versio
