907 research outputs found
How Many Topics? Stability Analysis for Topic Models
Topic modeling refers to the task of discovering the underlying thematic
structure in a text corpus, where the output is commonly presented as a report
of the top terms appearing in each topic. Despite the diversity of topic
modeling algorithms that have been proposed, a common challenge in successfully
applying these techniques is the selection of an appropriate number of topics
for a given corpus. Choosing too few topics will produce results that are
overly broad, while choosing too many will result in the "over-clustering" of a
corpus into many small, highly-similar topics. In this paper, we propose a
term-centric stability analysis strategy to address this issue, the idea being
that a model with an appropriate number of topics will be more robust to
perturbations in the data. Using a topic modeling approach based on matrix
factorization, evaluations performed on a range of corpora show that this
strategy can successfully guide the model selection process.Comment: Improve readability of plots. Add minor clarification
Macrospin approximation and quantum effects in models for magnetization reversal
The thermal activation of magnetization reversal in magnetic nanoparticles is
controlled by the anisotropy-energy barrier. Using perturbation theory, exact
diagonalization and stability analysis of the ferromagnetic spin-s Heisenberg
model with coupling or single-site anisotropy, we study the effects of quantum
fluctuations on the height of the energy barrier. Opposed to the classical
case, there is no critical anisotropy strength discriminating between reversal
via coherent rotation and via nucleation/domain-wall propagation. Quantum
fluctuations are seen to lower the barrier depending on the anisotropy
strength, dimensionality and system size and shape. In the weak-anisotropy
limit, a macrospin model is shown to emerge as the effective low-energy theory
where the microscopic spins are tightly aligned due to the ferromagnetic
exchange. The calculation provides explicit expressions for the anisotropy
parameter of the effective macrospin. We find a reduction of the
anisotropy-energy barrier as compared to the classical high spin-s limit.Comment: 10 pages, 11 figure
The critical dimension for a 4th order problem with singular nonlinearity
We study the regularity of the extremal solution of the semilinear biharmonic
equation \bi u=\f{\lambda}{(1-u)^2}, which models a simple
Micro-Electromechanical System (MEMS) device on a ball B\subset\IR^N, under
Dirichlet boundary conditions on . We complete
here the results of F.H. Lin and Y.S. Yang \cite{LY} regarding the
identification of a "pull-in voltage" \la^*>0 such that a stable classical
solution u_\la with 0 exists for \la\in (0,\la^*), while there is
none of any kind when \la>\la^*. Our main result asserts that the extremal
solution is regular provided while is singular () for , in which case
on the unit ball, where
and .Comment: 19 pages. This paper completes and replaces a paper (with a similar
title) which appeared in arXiv:0810.5380. Updated versions --if any-- of this
author's papers can be downloaded at this http://www.birs.ca/~nassif
Influence of Carbon Concentration on the Superconductivity in MgCxNi3
The influence of carbon concentration on the superconductivity (SC) in
MgCNi has been investigated by measuring the low temperature specific
heat combined with first principles electronic structure calculation. It is
found that the specific heat coefficient of the
superconducting sample () in normal state is twice that of the
non-superconducting one (). The comparison of measured
and the calculated electronic density of states (DOS) shows that the
effective mass renormalization changes remarkably as the carbon concentration
changes. The large mass renormalization for the superconducting sample and the
low (7K) indicate that more than one kind of boson mediated
electron-electron interactions exist in MgCNi.Comment: 4 pages, 4 figure
Bubbling AdS and Vacuum String Field Theory
We show that a family of 1/2--BPS states of SYM is in correspondence
with a family of classical solutions of VSFT with a --field playing the role
of the inverse Planck constant. We show this correspondence by relating the
Wigner distributions of the fermion systems representing such states, to
low energy space profiles of systems of VSFT D-branes. In this context the
Pauli exclusion principle appears as a consequence of the VSFT projector
equation. The family of 1/2--BPS states maps through coarse--graining to
droplet LLM supergravity solutions. We discuss the possible meaning of the
corresponding coarse graining in the VSFT side.Comment: 23 pages, subsection 4.1 added, Appendix suppressed. to be published
in NP
Noncommutative Electromagnetism As A Large N Gauge Theory
We map noncommutative (NC) U(1) gauge theory on R^d_C X R^{2n}_{NC} to U(N ->
\infty) Yang-Mills theory on R^d_C, where R^d_C is a d-dimensional commutative
spacetime while R^{2n}_{NC} is a 2n-dimensional NC space. The resulting U(N)
Yang-Mills theory on R^d_C is equivalent to that obtained by the dimensional
reduction of (d+2n)-dimensional U(N) Yang-Mills theory onto R^d_C. We show that
the gauge-Higgs system (A_\mu,\Phi^a) in the U(N -> \infty) Yang-Mills theory
on R^d_C leads to an emergent geometry in the (d+2n)-dimensional spacetime
whose metric was determined by Ward a long time ago. In particular, the
10-dimensional gravity for d=4 and n=3 corresponds to the emergent geometry
arising from the 4-dimensional N=4 vector multiplet in the AdS/CFT duality. We
further elucidate the emergent gravity by showing that the gauge-Higgs system
(A_\mu,\Phi^a) in half-BPS configurations describes self-dual Einstein gravity.Comment: 25 pages; More clarifications, to appear in Eur. Phys. J.
Onset of magnetism in B2 transition metals aluminides
Ab initio calculation results for the electronic structure of disordered bcc
Fe(x)Al(1-x) (0.4<x<0.75), Co(x)Al(1-x) and Ni(x)Al(1-x) (x=0.4; 0.5; 0.6)
alloys near the 1:1 stoichiometry, as well as of the ordered B2 (FeAl, CoAl,
NiAl) phases with point defects are presented. The calculations were performed
using the coherent potential approximation within the Korringa-Kohn-Rostoker
method (KKR-CPA) for the disordered case and the tight-binding linear
muffin-tin orbital (TB-LMTO) method for the intermetallic compounds. We studied
in particular the onset of magnetism in Fe-Al and Co-Al systems as a function
of the defect structure. We found the appearance of large local magnetic
moments associated with the transition metal (TM) antisite defect in FeAl and
CoAl compounds, in agreement with the experimental findings. Moreover, we found
that any vacancies on both sublattices enhance the magnetic moments via
reducing the charge transfer to a TM atom. Disordered Fe-Al alloys are
ferromagnetically ordered for the whole range of composition studied, whereas
Co-Al becomes magnetic only for Co concentration >0.5.Comment: 11 pages with 9 embedded postscript figures, to be published in
Phys.Rev.
CP violating neutrino oscillation and uncertainties in Earth matter density
We propose a statistical formulation to estimate possible errors in long
baseline neutrino oscillation experiments caused by uncertainties in the Earth
matter density. A quantitative investigation of the effect is made on the CP
asymmetry in future neutrino factory experiments.Comment: Latex, 10 pages, 5 figure
Interaction between M2-branes and Bulk Form Fields
We construct the interaction terms between the world-volume fields of
multiple M2-branes and the 3- and 6-form fields in the context of ABJM theory
with U()U() gauge symmetry. A consistency check is made in the
simplest case of a single M2-brane, i.e, our construction matches the known
effective action of M2-brane coupled to antisymmetric 3-form field. We show
that when dimensionally reduced, our couplings coincide with the effective
action of D2-branes coupled to R-R 3- and 5-form fields in type IIA string
theory. We also comment on the relation between a coupling with a specific
6-form field configuration and the supersymmetry preserving mass deformation in
ABJM theory.Comment: 30 pages, version to appear in JHE
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
- …
