1,100 research outputs found
Generalized Farey trees, transfer Operators and phase transitions
We consider a family of Markov maps on the unit interval, interpolating
between the tent map and the Farey map. The latter map is not uniformly
expanding. Each map being composed of two fractional linear transformations,
the family generalizes many particular properties which for the case of the
Farey map have been successfully exploited in number theory. We analyze the
dynamics through the spectral analysis of generalized transfer operators.
Application of the thermodynamic formalism to the family reveals first and
second order phase transitions and unusual properties like positivity of the
interaction function.Comment: 39 pages, 10 figure
Fast computation of Bernoulli, Tangent and Secant numbers
We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or
Euler) numbers. In particular, we give asymptotically fast algorithms for
computing the first n such numbers in O(n^2.(log n)^(2+o(1))) bit-operations.
We also give very short in-place algorithms for computing the first n Tangent
or Secant numbers in O(n^2) integer operations. These algorithms are extremely
simple, and fast for moderate values of n. They are faster and use less space
than the algorithms of Atkinson (for Tangent and Secant numbers) and Akiyama
and Tanigawa (for Bernoulli numbers).Comment: 16 pages. To appear in Computational and Analytical Mathematics
(associated with the May 2011 workshop in honour of Jonathan Borwein's 60th
birthday). For further information, see
http://maths.anu.edu.au/~brent/pub/pub242.htm
Recommended from our members
Microcraters in aluminum foils exposed by Stardust
We will present preliminary results on the nature and size frequency distribution of microcraters that formed in aluminum foils during the flyby of comet Wild 2 by the Stardust spacecraft
Partition functions and double-trace deformations in AdS/CFT
We study the effect of a relevant double-trace deformation on the partition
function (and conformal anomaly) of a CFT at large N and its dual picture in
AdS. Three complementary previous results are brought into full agreement with
each other: bulk and boundary computations, as well as their formal identity.
We show the exact equality between the dimensionally regularized partition
functions or, equivalently, fluctuational determinants involved. A series of
results then follows: (i) equality between the renormalized partition functions
for all d; (ii) for all even d, correction to the conformal anomaly; (iii) for
even d, the mapping entails a mixing of UV and IR effects on the same side
(bulk) of the duality, with no precedent in the leading order computations; and
finally, (iv) a subtle relation between overall coefficients, volume
renormalization and IR-UV connection. All in all, we get a clean test of the
AdS/CFT correspondence beyond the classical SUGRA approximation in the bulk and
at subleading O(1) order in the large-N expansion on the boundary.Comment: 18 pages, uses JHEP3.cls. Published JHEP versio
Hard Instances of the Constrained Discrete Logarithm Problem
The discrete logarithm problem (DLP) generalizes to the constrained DLP,
where the secret exponent belongs to a set known to the attacker. The
complexity of generic algorithms for solving the constrained DLP depends on the
choice of the set. Motivated by cryptographic applications, we study sets with
succinct representation for which the constrained DLP is hard. We draw on
earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such
as generalized Menelaus' theorem for proving lower bounds on the complexity of
the constrained DLP, and construct sets with succinct representation with
provable non-trivial lower bounds
Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation
Anomaly mediation solves the supersymmetric flavor and CP problems. This is
because the superconformal anomaly dictates that supersymmetry breaking is
transmitted through nearly flavor-blind infrared physics that is highly
predictive and UV insensitive. Slepton mass squareds, however, are predicted to
be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L}
while retaining the UV insensitivity. In this paper we consider electroweak
symmetry breaking via UV insensitive anomaly mediation in several models. For
the MSSM we find a stable vacuum when tanbeta < 1, but in this region the top
Yukawa coupling blows up only slightly above the supersymmetry breaking scale.
For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino
that is too light. Replacing the cubic singlet term in the NMSSM superpotential
with a term linear in the singlet we find a stable vacuum and viable spectrum.
Most of the parameter region with correct vacua requires a large superpotential
coupling, precisely what is expected in the ``Fat Higgs'' model in which the
superpotential is generated dynamically. We have therefore found the first
viable UV complete, UV insensitive supersymmetry breaking model that solves the
flavor and CP problems automatically: the Fat Higgs model with UV insensitive
anomaly mediation. Moreover, the cosmological gravitino problem is naturally
solved, opening up the possibility of realistic thermal leptogenesis.Comment: 27 pages, 3 figures, 1 tabl
CoGeNT Interpretations
Recently, the CoGeNT experiment has reported events in excess of expected
background. We analyze dark matter scenarios which can potentially explain this
signal. Under the standard case of spin independent scattering with equal
couplings to protons and neutrons, we find significant tensions with existing
constraints. Consistency with these limits is possible if a large fraction of
the putative signal events is coming from an additional source of experimental
background. In this case, dark matter recoils cannot be said to explain the
excess, but are consistent with it. We also investigate modifications to dark
matter scattering that can evade the null experiments. In particular, we
explore generalized spin independent couplings to protons and neutrons, spin
dependent couplings, momentum dependent scattering, and inelastic interactions.
We find that some of these generalizations can explain most of the CoGeNT
events without violation of other constraints. Generalized couplings with some
momentum dependence, allows further consistency with the DAMA modulation
signal, realizing a scenario where both CoGeNT and DAMA signals are coming from
dark matter. A model with dark matter interacting and annihilating into a new
light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie
Logarithmic correction to BH entropy as Noether charge
We consider the role of the type-A trace anomaly in static black hole
solutions to semiclassical Einstein equation in four dimensions. Via Wald's
Noether charge formalism, we compute the contribution to the entropy coming
from the anomaly induced effective action and unveil a logarithmic correction
to the Bekenstein-Hawking area law.
The corrected entropy is given by a seemingly universal formula involving the
coefficient of the type-A trace anomaly, the Euler characteristic of the
horizon and the value at the horizon of the solution to the uniformization
problem for Q-curvature. Two instances are examined in detail: Schwarzschild
and a four-dimensional massless topological black hole. We also find agreement
with the logarithmic correction due to one-loop contribution of conformal
fields in the Schwarzschild background.Comment: 14 pages, JHEP styl
Geometry and material effects in Casimir physics - Scattering theory
We give a comprehensive presentation of methods for calculating the Casimir
force to arbitrary accuracy, for any number of objects, arbitrary shapes,
susceptibility functions, and separations. The technique is applicable to
objects immersed in media other than vacuum, to nonzero temperatures, and to
spatial arrangements in which one object is enclosed in another. Our method
combines each object's classical electromagnetic scattering amplitude with
universal translation matrices, which convert between the bases used to
calculate scattering for each object, but are otherwise independent of the
details of the individual objects. This approach, which combines methods of
statistical physics and scattering theory, is well suited to analyze many
diverse phenomena. We illustrate its power and versatility by a number of
examples, which show how the interplay of geometry and material properties
helps to understand and control Casimir forces. We also examine whether
electrodynamic Casimir forces can lead to stable levitation. Neglecting
permeabilities, we prove that any equilibrium position of objects subject to
such forces is unstable if the permittivities of all objects are higher or
lower than that of the enveloping medium; the former being the generic case for
ordinary materials in vacuum.Comment: 44 pages, 11 figures, to appear in upcoming Lecture Notes in Physics
volume in Casimir physic
Casimir Effect on the Worldline
We develop a method to compute the Casimir effect for arbitrary geometries.
The method is based on the string-inspired worldline approach to quantum field
theory and its numerical realization with Monte-Carlo techniques. Concentrating
on Casimir forces between rigid bodies induced by a fluctuating scalar field,
we test our method with the parallel-plate configuration. For the
experimentally relevant sphere-plate configuration, we study curvature effects
quantitatively and perform a comparison with the ``proximity force
approximation'', which is the standard approximation technique. Sizable
curvature effects are found for a distance-to-curvature-radius ratio of a/R >~
0.02. Our method is embedded in renormalizable quantum field theory with a
controlled treatment of the UV divergencies. As a technical by-product, we
develop various efficient algorithms for generating closed-loop ensembles with
Gaussian distribution.Comment: 27 pages, 10 figures, Sect. 2.1 more self-contained, improved data
for Fig. 6, minor corrections, new Refs, version to be published in JHE
- …
