1,481 research outputs found

    Robust fault detection for networked systems with communication delay and data missing

    Get PDF
    n this paper, the robust fault detection problem is investigated for a class of discrete-time networked systems with unknown input and multiple state delays. A novel measurement model is utilized to represent both the random measurement delays and the stochastic data missing phenomenon, which typically result from the limited capacity of the communication networks. The network status is assumed to vary in a Markovian fashion and its transition probability matrix is uncertain but resides in a known convex set of a polytopic type. The main purpose of this paper is to design a robust fault detection filter such that, for all unknown inputs, possible parameter uncertainties and incomplete measurements, the error between the residual signal and the fault signal is made as small as possible. By casting the addressed robust fault detection problem into an auxiliary robust H∞ filtering problem of a certain Markovian jumping system, a sufficient condition for the existence of the desired robust fault detection filter is established in terms of linear matrix inequalities. A numerical example is provided to illustrate the effectiveness and applicability of the proposed technique

    Water wave propagation and scattering over topographical bottoms

    Get PDF
    Here I present a general formulation of water wave propagation and scattering over topographical bottoms. A simple equation is found and is compared with existing theories. As an application, the theory is extended to the case of water waves in a column with many cylindrical steps

    Integrating fluctuations into distribution of resources in transportation networks

    Full text link
    We propose a resource distribution strategy to reduce the average travel time in a transportation network given a fixed generation rate. Suppose that there are essential resources to avoid congestion in the network as well as some extra resources. The strategy distributes the essential resources by the average loads on the vertices and integrates the fluctuations of the instantaneous loads into the distribution of the extra resources. The fluctuations are calculated with the assumption of unlimited resources, where the calculation is incorporated into the calculation of the average loads without adding to the time complexity. Simulation results show that the fluctuation-integrated strategy provides shorter average travel time than a previous distribution strategy while keeping similar robustness. The strategy is especially beneficial when the extra resources are scarce and the network is heterogeneous and lowly loaded.Comment: 14 pages, 4 figure

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around ν=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques

    Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules

    Full text link
    In this article, we study the doubly heavy baryon states Ξcc\Xi_{cc}, Ωcc\Omega_{cc}, Ξbb\Xi_{bb} and Ωbb\Omega_{bb} in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔMΞcc=1.11GeV\Delta M_{\Xi_{cc}}=-1.11\,\rm{GeV}, ΔMΩcc=0.33GeV\Delta M_{\Omega_{cc}}=-0.33\,\rm{GeV}, ΔMΞbb=3.37GeV\Delta M_{\Xi_{bb}}=-3.37\,\rm{GeV} and ΔMΩbb=1.05GeV\Delta M_{\Omega_{bb}}=-1.05\,\rm{GeV} can be confronted with the experimental data in the future.Comment: 10 pages, 4 figure

    Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids

    Full text link
    We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, incompressible, athermal fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal point from a symmetric and homogeneous mixture into a two-phase configuration. We find the average domain size growing with time as tγt^\gamma, where γ\gamma increases in the range 0.545<γ<0.7170.545 < \gamma < 0.717, consistent with a crossover between diffusive t1/3t^{1/3} and hydrodynamic viscous, t1.0t^{1.0}, behaviour. We find good collapse onto a single scaling function, yet the domain growth exponents differ from others' works' for similar values of the unique characteristic length and time that can be constructed out of the fluid's parameters. This rebuts claims of universality for the dynamical scaling hypothesis. At early times, we also find a crossover from q2q^2 to q4q^4 in the scaled structure function, which disappears when the dynamical scaling reasonably improves at later times. This excludes noise as the cause for a q2q^2 behaviour, as proposed by others. We also observe exponential temporal growth of the structure function during the initial stages of the dynamics and for wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review

    Filtering and fault detection for nonlinear systems with polynomial approximation

    Get PDF
    This paper is concerned with polynomial filtering and fault detection problems for a class of nonlinear systems subject to additive noises and faults. The nonlinear functions are approximated with polynomials of a chosen degree. Different from the traditional methods, the approximation errors are not discarded but formulated as low-order polynomial terms with norm-bounded coefficients. The aim of the filtering problem is to design a least squares filter for the formulated nonlinear system with uncertain polynomials, and an upper bound of the filtering error covariance is found and subsequently minimized at each time step. The desired filter gain is obtained by recursively solving a set of Riccati-like matrix equations, and the filter design algorithm is therefore applicable for online computation. Based on the established filter design scheme, the fault detection problem is further investigated where the main focus is on the determination of the threshold on the residual. Due to the nonlinear and time-varying nature of the system under consideration, a novel threshold is determined that accounts for the noise intensity and the approximation errors, and sufficient conditions are established to guarantee the fault detectability for the proposed fault detection scheme. Comparative simulations are exploited to illustrate that the proposed filtering strategy achieves better estimation accuracy than the conventional polynomial extended Kalman filtering approach. The effectiveness of the associated fault detection scheme is also demonstrated.The National Natural Science Foundation of China under grants 61490701, 61210012, 61290324, and 61273156, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Finance and Economics of China under Grant JSEB201301

    Hamiltonian theory of gaps, masses and polarization in quantum Hall states: full disclosure

    Full text link
    I furnish details of the hamiltonian theory of the FQHE developed with Murthy for the infrared, which I subsequently extended to all distances and apply it to Jain fractions \nu = p/(2ps + 1). The explicit operator description in terms of the CF allows one to answer quantitative and qualitative issues, some of which cannot even be posed otherwise. I compute activation gaps for several potentials, exhibit their particle hole symmetry, the profiles of charge density in states with a quasiparticles or hole, (all in closed form) and compare to results from trial wavefunctions and exact diagonalization. The Hartree-Fock approximation is used since much of the nonperturbative physics is built in at tree level. I compare the gaps to experiment and comment on the rough equality of normalized masses near half and quarter filling. I compute the critical fields at which the Hall system will jump from one quantized value of polarization to another, and the polarization and relaxation rates for half filling as a function of temperature and propose a Korringa like law. After providing some plausibility arguments, I explore the possibility of describing several magnetic phenomena in dirty systems with an effective potential, by extracting a free parameter describing the potential from one data point and then using it to predict all the others from that sample. This works to the accuracy typical of this theory (10 -20 percent). I explain why the CF behaves like free particle in some magnetic experiments when it is not, what exactly the CF is made of, what one means by its dipole moment, and how the comparison of theory to experiment must be modified to fit the peculiarities of the quantized Hall problem

    Muon-spin rotation and magnetization studies of chemical and hydrostatic pressure effects in EuFe_{2}(As_{1-x}P_{x})_{2}

    Full text link
    The magnetic phase diagram of EuFe2_{2}(As1x_{1-x}Px_{x})2_{2} was investigated by means of magnetization and muon-spin rotation studies as a function of chemical (isovalent substitution of As by P) and hydrostatic pressure. The magnetic phase diagrams of the magnetic ordering of the Eu and Fe spins with respect to P content and hydrostatic pressure are determined and discussed. The present investigations reveal that the magnetic coupling between the Eu and the Fe sublattices strongly depends on chemical and hydrostatic pressure. It is found that chemical and hydrostatic pressure have a similar effect on the Eu and Fe magnetic order.Comment: 11 pages, 10 figure
    corecore