29 research outputs found

    Solubility, Light Output and Energy Resolution Studies of Molybdenum-Loaded Liquid Scintillators

    Get PDF
    The search for neutrinoless double-beta decay is an important part of the global neutrino physics program. One double-beta decay isotope currently under investigation is 100Mo. In this article, we discuss the results of a feasibility study investigating the use of molybdenum-loaded liquid scintillator. A large, molybdenum-loaded liquid scintillator detector is one potential design for a low-background, internal-source neutrinoless double-beta decay search with 100Mo. The program outlined in this article included the selection of a solute containing molybdenum, a scintillating solvent and the evaluation of the mixture's performance as a radiation detector.Comment: 8 pages, 3 figure

    On the Detection of a Scalar Stochastic Background of Gravitational Waves

    Get PDF
    In the near future we will witness the coming to a full operational regime of laser interferometers and resonant mass detectors of spherical shape. In this work we study the sensitivity of pairs of such gravitational wave detectors to a scalar stochastic background of gravitational waves. Our computations are carried out both for minimal and non minimal coupling of the scalar fields.Comment: 25 pages, 3 figure

    Black Hole Evaporation in the Presence of a Short Distance Cutoff

    Full text link
    A derivation of the Hawking effect is given which avoids reference to field modes above some cutoff frequency ωcM1\omega_c\gg M^{-1} in the free-fall frame of the black hole. To avoid reference to arbitrarily high frequencies, it is necessary to impose a boundary condition on the quantum field in a timelike region near the horizon, rather than on a (spacelike) Cauchy surface either outside the horizon or at early times before the horizon forms. Due to the nature of the horizon as an infinite redshift surface, the correct boundary condition at late times outside the horizon cannot be deduced, within the confines of a theory that applies only below the cutoff, from initial conditions prior to the formation of the hole. A boundary condition is formulated which leads to the Hawking effect in a cutoff theory. It is argued that it is possible the boundary condition is {\it not} satisfied, so that the spectrum of black hole radiation may be significantly different from that predicted by Hawking, even without the back-reaction near the horizon becoming of order unity relative to the curvature.Comment: 35 pages, plain LaTeX, UMDGR93-32, NSF-ITP-93-2

    Can induced gravity isotropize Bianchi I, V, or IX Universes?

    Get PDF
    We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the non--minimal coupling of gravity and the scalar field. The analytical results that we found for the Brans-Dicke (BD) theory are now applied to the IG theory which has ω1\omega \ll 1 (ω\omega being the square ratio of the Higgs to Planck mass) in a cosmological era in which the IG--potential is not significant. We find that the isotropization mechanism crucially depends on the value of ω\omega. Its smallness also permits inflationary solutions. For the Bianch V model inflation due to the Higgs potential takes place afterwads, and subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1

    Bounds on the possible evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae

    Get PDF
    Recent high-redshift Type Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant GG. If the local value of GG at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56^{56}Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass MChG3/2M_{Ch} \propto G^{-3/2}. In addition, the integrated variation of GG with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of Type Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying GG could modify the Hubble diagram of Type Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of GG. We find G/G_0 \la 1.1 and G'/G \la 10^{-11} yr^{-1} at redshifts z0.5z\simeq 0.5. These new bounds extend the currently available constrains on the evolution of GG all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e. by more than 15 orders of magnitudes in time and distance.Comment: 9 pages, 4 figures, Phys. Rev. D. in pres
    corecore