790 research outputs found
The Magnificent Seven: Magnetic fields and surface temperature distributions
Presently seven nearby radio-quiet isolated neutron stars discovered in ROSAT
data and characterized by thermal X-ray spectra are known. They exhibit very
similar properties and despite intensive searches their number remained
constant since 2001 which led to their name ``The Magnificent Seven''. Five of
the stars exhibit pulsations in their X-ray flux with periods in the range of
3.4 s to 11.4 s. XMM-Newton observations revealed broad absorption lines in the
X-ray spectra which are interpreted as cyclotron resonance absorption lines by
protons or heavy ions and / or atomic transitions shifted to X-ray energies by
strong magnetic fields of the order of 10^13 G. New XMM-Newton observations
indicate more complex X-ray spectra with multiple absorption lines. Pulse-phase
spectroscopy of the best studied pulsars RX J0720.4-3125 and RBS 1223 reveals
variations in derived emission temperature and absorption line depth with pulse
phase. Moreover, RX J0720.4-3125 shows long-term spectral changes which are
interpreted as due to free precession of the neutron star. Modeling of the
pulse profiles of RX J0720.4-3125 and RBS 1223 provides information about the
surface temperature distribution of the neutron stars indicating hot polar caps
which have different temperatures, different sizes and are probably not located
in antipodal positions.Comment: 10 pages, 8 figures, to appear in Astrophysics and Space Science, in
the proceedings of "Isolated Neutron Stars: from the Interior to the
Surface", edited by D. Page, R. Turolla and S. Zan
The complex X-ray spectrum of the isolated neutron star RBS1223
We present a first analysis of a deep X-ray spectrum of the isolated neutron
star RBS1223 obtained with XMM-Newton. Spectral data from four new monitoring
observations in 2005/2006 were combined with archival observations obtained in
2003 and 2004 to form a spin-phase averaged spectrum containing 290000 EPIC-pn
photons. This spectrum shows higher complexity than its predecessors, and can
be parameterised with two Gaussian absorption lines superimposed on a
blackbody. The line centers, E_2 ~ 2E_1, could be regarded as supporting the
cyclotron interpretation of the absorption features in a field B ~ 4 x 10**13
G. The flux ratio of those lines does not support this interpretation. Hence,
either feature might be of truly atomic origin.Comment: 4 pages, 1 figure, to appear in Astrophysics and Space Science, in
the proceedings of "Isolated Neutron Stars: from the Interior to the
Surface", edited by D. Page, R. Turolla and S. Zan
Retrospective Reports of Childhood Trauma in Adults with ADHD
Although studies have documented higher prevalence of abuse in children with ADHD, no studies have investigated
childhood reports of abuse in individuals identified withADHDin adulthood. Method: FortyADHDwomen, 17ADHD
males, 17 female controls, and 40 male controls complete the Childhood Trauma Questionnaire and other measures of
psychosocial functioning. Results: Emotional abuse and neglect are more common among men and women with ADHD as
compared to controls. Sexual abuse and physical neglect are more commonly reported by females with ADHD. Although
childhood abuse is significantly correlated with depression and anxiety in adulthood, having ADHD is a better predictor of
poorer psychosocial functioning in adulthood. Conclusion: Clinicians are alerted that patients with ADHD symptoms have a
high probability of childhood abuse
Influences of neutron star parameters on evolutions of different types of pulsar; evolutions of anomalous X-ray pulsars, soft gamma repeaters and dim isolated thermal neutron stars on the P-\.{P} diagram
Influences of the mass, moment of inertia, rotation, absence of stability in
the atmosphere and some other parameters of neutron stars on the evolution of
pulsars are examined. It is shown that the locations and evolutions of soft
gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the
period versus period derivative diagram can be explained adopting values of
B G for these objects. This approach gives the possibility to explain
many properties of different types of pulsar.Comment: 18 pages, 1 figur
Evidence for a Binary Companion to the Central Compact Object 1E 1207.4-5209
Unique among neutron stars, 1E 1207.4-5209 is an X-ray pulsar with a spin
period of 424 ms that contains at least two strong absorption features in its
energy spectrum. This neutron star has been identified as a member of the
radio-quiet compact central objects in supernova remnants. It has been found
that 1E 1207.4-5209 is not spinning down monotonically suggesting that this
neutron star undergoes strong, frequent glitches, contains a fall-back disk, or
possess a binary companion. Here, we report on a sequence of seven XMM-Newton
observations of 1E 1207.4-5209 performed during a 40 day window in June/July
2005. Due to unanticipated variance in the phase measurements beyond the
statistical uncertainties, we could not identify a unique phase-coherent timing
solution. The three most probable timing solutions give frequency time
derivatives of +0.9, -2.6, and +1.6 X 10^(-12) Hz/s (listed in descending order
of significance). We conclude that the local frequency derivative during our
XMM-Newton observing campaign differs from the long-term spin-down rate by more
than an order of magnitude, effectively ruling out glitch models for 1E
1207.4-5209. If the long-term spin frequency variations are caused by timing
noise, the strength of the timing noise in 1E 1207.4-5209 is much stronger than
in other pulsars with similar period derivatives. Therefore, it is highly
unlikely that the spin variations are caused by the same physical process that
causes timing noise in other isolated pulsars. The most plausible scenario for
the observed spin irregularities is the presence of a binary companion to 1E
1207.4-5209. We identified a family of orbital solutions that are consistent
with our phase-connected timing solution, archival frequency measurements, and
constraints on the companions mass imposed by deep IR and optical observations.Comment: 8 pages, 4 figures. To be published in the proceedings of "Isolated
Neutron Stars: from the Interior to the Surface" (April 24-28, 2006) - eds.
D. Page, R. Turolla & S. Zan
Measuring proper motions of isolated neutron stars with Chandra
The excellent spatial resolution of the Chandra observatory offers the
unprecedented possibility to measure proper motions at X-ray wavelength with
relatively high accuracy using as reference the background of extragalactic or
remote galactic X-ray sources. We took advantage of this capability to
constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray
bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and
lacking an optical counterpart. In this paper, we present results from a
preliminary analysis from which we derive 2 sigma upper limits of 76 mas/yr and
138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022
respectively. We use these values together with those of other ROSAT discovered
INSs to constrain the origin, distance and evolutionary status of this
particular group of objects. We find that the tangential velocities of radio
quiet ROSAT neutron stars are probably consistent with those of 'normal'
pulsars. Their distribution on the sky and, for those having accurate proper
motion vectors, their possible birth places, all point to a local population,
probably created in the part of the Gould Belt nearest to the earth.Comment: 8 pages, 3 figures, to appear in Astrophysics and Space Science, in
the proceedings of "Isolated Neutron Stars: from the Interior to the
Surface", edited by D. Page, R. Turolla and S. Zan
Precision neutron interferometric measurements of the n-p, n-d, and n-3He zero-energy coherent neutron scattering amplitudes
We have performed high precision measurements of the zero-energy neutron
scattering amplitudes of gas phase molecular hydrogen, deuterium, and He
using neutron interferometry. We find
fm\cite{Schoen03},
fm\cite{Black03,Schoen03}, and
fm\cite{Huffman04}. When combined with the previous world data, properly
corrected for small multiple scattering, radiative corrections, and local field
effects from the theory of neutron optics and combined by the prescriptions of
the Particle Data Group, the zero-energy scattering amplitudes are:
fm, fm, and fm. The precision of
these measurements is now high enough to severely constrain NN few-body models.
The n-d and n-He coherent neutron scattering amplitudes are both now in
disagreement with the best current theories. The new values can be used as
input for precision calculations of few body processes. This precision data is
sensitive to small effects such as nuclear three-body forces, charge-symmetry
breaking in the strong interaction, and residual electromagnetic effects not
yet fully included in current models.Comment: 6 pages, 4 figures, submitted to Physica B as part of the Festschrift
honouring Samuel A. Werner at the International Conference on Neutron
Scattering 200
Chandra Smells a RRAT: X-ray Detection of a Rotating Radio Transient
"Rotating RAdio Transients" (RRATs) are a newly discovered astronomical
phenomenon, characterised by occasional brief radio bursts, with average
intervals between bursts ranging from minutes to hours. The burst spacings
allow identification of periodicities, which fall in the range 0.4 to 7
seconds. The RRATs thus seem to be rotating neutron stars, albeit with
properties very different from the rest of the population. We here present the
serendipitous detection with the Chandra X-ray Observatory of a bright
point-like X-ray source coincident with one of the RRATs. We discuss the
temporal and spectral properties of this X-ray emission, consider counterparts
in other wavebands, and interpret these results in the context of possible
explanations for the RRAT population.Comment: 5 pages, 2 b/w figures, 1 color figure. To appear in the proceedings
of "Isolated Neutron Stars", Astrophysics & Space Science, in pres
Genetically engineered silk-based composite biomaterials functionalized with fibronectin type-II that promote cell adhesion
[Excerpt] Recombinant protein-based polymers (rPBPs) are an emerging class of biopolymers inspired by Nature and produced by synthetic protein biotechnology approaches. Due to their exceptional physical-chemical and biological characteristics, as well as their ability to be customized for specific applications, rPBPs have been explored for the development of advanced biomaterials [1]. Within rPBPs, silk-like polymers (SLP) are being utilized in a range of studies in materials science [2]. [...]This work was supported by FCT Funded Project “Chimera” (PTDC/EBB-EBI/109093/2008),
by FCT/MEC through Portuguese funds (PIDDAC) – PEst-OE/BIA/UI4050/2014, by the
strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569) funded by
national funds through the FCT I.P. and by the ERDF through COMPETE2020 - Programa
Operacional Competitividade e Internacionalização (POCI). TC is thankful to the FCT for its
support through Investigador FCT 2015. ARibeiro thanks FCT for the SFRH/BPD/98388/2013
grant. RMachado and AdaCosta acknowledge FCT for SFRH-BPD/86470/2012 and
SFRH/BD/75882/2011 grants, respectively
Clustering transitions in vibro-fluidized magnetized granular materials
We study the effects of long range interactions on the phases observed in
cohesive granular materials. At high vibration amplitudes, a gas of magnetized
particles is observed with velocity distributions similar to non-magnetized
particles. Below a transition temperature compact clusters are observed to form
and coexist with single particles. The cluster growth rate is consistent with a
classical nucleation process. However, the temperature of the particles in the
clusters is significantly lower than the surrounding gas, indicating a
breakdown of equipartition. If the system is quenched to low temperatures, a
meta-stable network of connected chains self-assemble due to the anisotropic
nature of magnetic interactions between particles.Comment: 4 pages, 5 figure
- …
