1,534 research outputs found
The Large Magellanic Cloud: A power spectral analysis of Spitzer images
We present a power spectral analysis of Spitzer images of the Large
Magellanic Cloud. The power spectra of the FIR emission show two different
power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones
(tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9.
The break occurs at a scale around 100-200 pc. We interpret this break as the
scale height of the dust disk of the LMC. We perform high resolution
simulations with and without stellar feedback. Our AMR hydrodynamic simulations
of model galaxies using the LMC mass and rotation curve, confirm that they have
similar two-component power-laws for projected density and that the break does
indeed occur at the disk thickness. Power spectral analysis of velocities
betrays a single power law for in-plane components. The vertical component of
the velocity shows a flat behavior for large structures and a power law similar
to the in-plane velocities at small scales. The motions are highly anisotropic
at large scales, with in-plane velocities being much more important than
vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks",
celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To
be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I.
Puerar
Entropy of Lovelock Black Holes
A general formula for the entropy of stationary black holes in Lovelock
gravity theories is obtained by integrating the first law of black hole
mechanics, which is derived by Hamiltonian methods. The entropy is not simply
one quarter of the surface area of the horizon, but also includes a sum of
intrinsic curvature invariants integrated over a cross section of the horizon.Comment: 15 pages, plain Latex, NSF-ITP-93-4
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
Wavy Strings: Black or Bright?
Recent developments in string theory have brought forth a considerable
interest in time-dependent hair on extended objects. This novel new hair is
typically characterized by a wave profile along the horizon and angular
momentum quantum numbers in the transverse space. In this work, we
present an extensive treatment of such oscillating black objects, focusing on
their geometric properties. We first give a theorem of purely geometric nature,
stating that such wavy hair cannot be detected by any scalar invariant built
out of the curvature and/or matter fields. However, we show that the tidal
forces detected by an infalling observer diverge at the `horizon' of a black
string superposed with a vibration in any mode with . The same
argument applied to longitudinal () waves detects only finite tidal
forces. We also provide an example with a manifestly smooth metric, proving
that at least a certain class of these longitudinal waves have regular
horizons.Comment: 45 pages, latex, no figure
Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem
We consider multidimensional gravitational models with a nonlinear scalar
curvature term and form fields in the action functional. In our scenario it is
assumed that the higher dimensional spacetime undergoes a spontaneous
compactification to a warped product manifold. Particular attention is paid to
models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for
solitonic form fields. It is shown that for certain parameter ranges the extra
dimensions are stabilized. In particular, stabilization is possible for any
sign of the internal space curvature, the bulk cosmological constant and of the
effective four-dimensional cosmological constant. Moreover, the effective
cosmological constant can satisfy the observable limit on the dark energy
density. Finally, we discuss the restrictions on the parameters of the
considered nonlinear models and how they follow from the connection between the
D-dimensional and the four-dimensional fundamental mass scales.Comment: 21 pages, LaTeX2e, minor changes, improved references, fonts include
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Parental stressors in professional youth football academies: a qualitative investigation of specialising stage parents
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism
We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence
of the outcome of collapse on many-body corrections to neutrino-nucleon cross
sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy
nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and
neutrino-nucleon scattering. Importantly, proximity to criticality amplifies
the role of even small changes in the neutrino-matter couplings, and such
changes can together add to produce outsized effects. When close to the
critical condition the cumulative result of a few small effects (including
seeds) that individually have only modest consequence can convert an anemic
into a robust explosion, or even a dud into a blast. Such sensitivity is not
seen in one dimension and may explain the apparent heterogeneity in the
outcomes of detailed simulations performed internationally. A natural
conclusion is that the different groups collectively are closer to a realistic
understanding of the mechanism of core-collapse supernovae than might have
seemed apparent.Comment: 25 pages; 10 figure
Light propagation in statistically homogeneous and isotropic universes with general matter content
We derive the relationship of the redshift and the angular diameter distance
to the average expansion rate for universes which are statistically homogeneous
and isotropic and where the distribution evolves slowly, but which have
otherwise arbitrary geometry and matter content. The relevant average expansion
rate is selected by the observable redshift and the assumed symmetry properties
of the spacetime. We show why light deflection and shear remain small. We write
down the evolution equations for the average expansion rate and discuss the
validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular
diameter distance and two typos. No change in result
PTF1 J082340.04+081936.5: A hot subdwarf B star with a low-mass white dwarf companion in an 87-minute orbit
We present the discovery of the hot subdwarf B star (sdB) binary PTF1 J082340.04+081936.5. The system has an orbital period of P orb = 87.49668(1) minutes (0.060761584(10) days), making it the second-most compact sdB binary known. The light curve shows ellipsoidal variations. Under the assumption that the sdB primary is synchronized with the orbit, we find a mass of M sdB = 0.45 +0.09 -0.07 M ⊙ , a companion white dwarf mass of M WD = 0.46 + 0.12 -0.09 M ⊙ , and a mass ratio of q = M WD /M sdB = 1.03 +0.10 -0.08 . The future evolution was calculated using the MESA stellar evolution code. Adopting a canonical sdB mass of M sdB = 0.47 M ⊙ , we find that the sdB still burns helium at the time it will fill its Roche lobe if the orbital period was less than 106 minutes at the exit from the last common envelope (CE) phase. For longer CE exit periods, the sdB will have stopped burning helium and turned into a C/O white dwarf at the time of contact. Comparing the spectroscopically derived log g and T eff with our MESA models, we find that an sdB model with a hydrogen envelope mass of 5 × 10 -4 M ⊙ matches the measurements at a post-CE age of 94 Myr, corresponding to a post-CE orbital period of 109 minutes, which is close to the limit to start accretion while the sdB is still burning helium
- …
