164 research outputs found
A novel procedure for fast surface structural analysis based on LEED intensity data
By evaluating LEED intensities from different diffraction beams taken only at discrete energy intervals (which may be as large as 15–20 eV) the same degree of reliability in surface structure determination can be reached as with the conventional techniques based on analysis of continuous I/V-spectra. The minimum of the corresponding R-factor can be found by a least-squares fit method, as will be exemplified with a system in which 8 structural parameters were subject to simultaneous refinement
Lattice Dynamics and the High Pressure Equation of State of Au
Elastic constants and zone-boundary phonon frequencies of gold are calculated
by total energy electronic structure methods to twofold compression. A
generalized force constant model is used to interpolate throughout the
Brillouin zone and evaluate moments of the phonon distribution. The moments are
used to calculate the volume dependence of the Gruneisen parameter in the fcc
solid. Using these results with ultrasonic and shock data, we formulate the
complete free energy for solid Au. This free energy is given as a set of closed
form expressions, which are valid to compressions of at least V/V_0 = 0.65 and
temperatures up to melting. Beyond this density, the Hugoniot enters the
solid-liquid mixed phase region. Effects of shock melting on the Hugoniot are
discussed within an approximate model. We compare with proposed standards for
the equation of state to pressures of ~200 GPa. Our result for the room
temperature isotherm is in very good agreement with an earlier standard of
Heinz and Jeanloz.Comment: 13 pages, 8 figures. Accepted by Phys. Rev.
Photon interferometry and size of the hot zone in relativistic heavy ion collisions
The parameters obtained from the theoretical analysis of the single photon
spectra observed by the WA98 collaboration at SPS energies have been used to
evaluate the two photon correlation functions. The single photon spectra and
the two photon correlations at RHIC energies have also been evaluated, taking
into account the effects of the possible spectral change of hadrons in a
thermal bath. We find that the ratio for SPS and
for RHIC energy.Comment: text changed, figures adde
Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei
At luminosities below a few percent of Eddington, accreting black holes
switch to a hard spectral state which is very different from the soft
blackbody-like spectral state that is found at higher luminosities. The hard
state is well-described by a two-temperature, optically thin, geometrically
thick, advection-dominated accretion flow (ADAF) in which the ions are
extremely hot (up to K near the black hole), the electrons are also
hot ( K), and thermal Comptonization dominates the X-ray
emission. The radiative efficiency of an ADAF decreases rapidly with decreasing
mass accretion rate, becoming extremely low when a source reaches quiescence.
ADAFs are expected to have strong outflows, which may explain why relativistic
jets are often inferred from the radio emission of these sources. It has been
suggested that most of the X-ray emission also comes from a jet, but this is
less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on
All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as
a special edition of "Astrophysics and Space Science" by Kluwe
Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential
We address a two-dimensional nonlinear elliptic problem with a
finite-amplitude periodic potential. For a class of separable symmetric
potentials, we study the bifurcation of the first band gap in the spectrum of
the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to
describe this bifurcation. The coupled-mode equations are derived by the
rigorous analysis based on the Fourier--Bloch decomposition and the Implicit
Function Theorem in the space of bounded continuous functions vanishing at
infinity. Persistence of reversible localized solutions, called gap solitons,
beyond the coupled-mode equations is proved under a non-degeneracy assumption
on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the
coupled-mode equations and convergence of the approximation error is verified.
Error estimates on the time-dependent solutions of the Gross--Pitaevskii
equation and the coupled-mode equations are obtained for a finite-time
interval.Comment: 32 pages, 16 figure
Active Galactic Nuclei at the Crossroads of Astrophysics
Over the last five decades, AGN studies have produced a number of spectacular
examples of synergies and multifaceted approaches in astrophysics. The field of
AGN research now spans the entire spectral range and covers more than twelve
orders of magnitude in the spatial and temporal domains. The next generation of
astrophysical facilities will open up new possibilities for AGN studies,
especially in the areas of high-resolution and high-fidelity imaging and
spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These
studies will address in detail a number of critical issues in AGN research such
as processes in the immediate vicinity of supermassive black holes, physical
conditions of broad-line and narrow-line regions, formation and evolution of
accretion disks and relativistic outflows, and the connection between nuclear
activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic
Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical
Symposia Serie
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
Effect of fertilization at sowing on nutrition and yield of crambe in second season
The interest in crambe (Crambe abyssinica) cultivation in Brazil is on the rise, whereas information on the nutrient requirements for this crop is scarce. The objective of this work was to evaluate the effect of nitrogen-phosphorus-potassium (N-P2O5-K2O formula 8:28:16) fertilization (0, 150, and 300 kg ha-1) on crambe shoot biomass production, grain and oil yields, and nutrient extraction and exportation in the second growing season after soybean. The experiment with a Haplorthox (Dystroferric Red Latosol) was carried out for two years in Botucatu, São Paulo State, Brazil. A randomized complete block design with eight replications was used. Fertilization with NPK at sowing increased the shoot biomass production, grain yield, grain oil content, as well as nutrient extraction and exportation at harvest. In the fertilized treatments, the average amounts of nutrients extracted per hectare were 91 kg K, 71 kg N, 52 kg Ca, 9.4 kg P, 9.4 kg Mg, 7.9 kg S, 2,348 g Fe, 289 g Zn, 135 g Mn, and 18.2 g Cu; while the average values of nutrient exportation per hectare were 54 kg N, 20 kg K, 12.3 kg Ca, 10 kg P, 6.6 kg S, 3.2 kg Mg, 365 g Zn, 60 g Fe, 50 g Mn, and 7.3 g Cu, with NPK fertilizer application.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Crop Science College of Agricultural Sciences São Paulo State University - FCA/ UNESP, P.O. Box 37, CEP 18610-307 Botucatu (SP)FCA/UNESPDepartment of Crop Science FCA/UNESPDepartment of Crop Science College of Agricultural Sciences São Paulo State University - FCA/ UNESP, P.O. Box 37, CEP 18610-307 Botucatu (SP)FCA/UNESPDepartment of Crop Science FCA/UNES
- …
