1,707 research outputs found
Confined granular packings: structure, stress, and forces
The structure and stresses of static granular packs in cylindrical containers
are studied using large-scale discrete element molecular dynamics simulations
in three dimensions. We generate packings by both pouring and sedimentation and
examine how the final state depends on the method of construction. The vertical
stress becomes depth-independent for deep piles and we compare these stress
depth-profiles to the classical Janssen theory. The majority of the tangential
forces for particle-wall contacts are found to be close to the Coulomb failure
criterion, in agreement with the theory of Janssen, while particle-particle
contacts in the bulk are far from the Coulomb criterion. In addition, we show
that a linear hydrostatic-like region at the top of the packings unexplained by
the Janssen theory arises because most of the particle-wall tangential forces
in this region are far from the Coulomb yield criterion. The distributions of
particle-particle and particle-wall contact forces exhibit
exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references,
fixed typo
A multi-photon Stokes-parameter invariant for entangled states
We consider the Minkowskian norm of the n-photon Stokes tensor, a scalar
invariant under the group realized by the transformations of stochastic local
quantum operations and classical communications (SLOCC). This invariant is
offered as a candidate entanglement measure for n-qubit states and discussed in
relation to measures of quantum state entanglement for certain important
classes of two-qubit and three-qubit systems. This invariant can be directly
estimated via a quantum network, obviating the need to perform laborious
quantum state tomography. We also show that this invariant directly captures
the extent of entanglement purification due to SLOCC filters.Comment: 9 pages, 0 figures, Accepted for publication in Physical Review
Statistics of the contact network in frictional and frictionless granular packings
Simulated granular packings with different particle friction coefficient mu
are examined. The distribution of the particle-particle and particle-wall
normal and tangential contact forces P(f) are computed and compared with
existing experimental data. Here f equivalent to F/F-bar is the contact force F
normalized by the average value F-bar. P(f) exhibits exponential-like decay at
large forces, a plateau/peak near f = 1, with additional features at forces
smaller than the average that depend on mu. Computations of the force-force
spatial distribution function and the contact point radial distribution
function indicate that correlations between forces are only weakly dependent on
friction and decay rapidly beyond approximately three particle diameters.
Distributions of the particle-particle contact angles show that the contact
network is not isotropic and only weakly dependent on friction. High
force-bearing structures, or force chains, do not play a dominant role in these
three dimensional, unloaded packings.Comment: 11 pages, 13 figures, submitted to PR
Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure
High pressure structural distortions of the hexagonal close packed (hcp)
element zinc have been a subject of controversy. Earlier experimental results
and theory showed a large anomaly in lattice strain with compression in zinc at
about 10 GPa which was explained theoretically by a change in Fermi surface
topology. Later hydrostatic experiments showed no such anomaly, resulting in a
discrepancy between theory and experiment. We have computed the compression and
lattice strain of hcp zinc over a wide range of compressions using the
linearized augmented plane wave (LAPW) method paying special attention to
k-point convergence. We find that the behavior of the lattice strain is
strongly dependent on k-point sampling, and with large k-point sets the
previously computed anomaly in lattice parameters under compression disappears,
in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press
Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma
High-grade epithelial ovarian carcinomas (OC) containing mutated BRCA1 or BRCA2 (BRCA1/2) homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi), while restoration of HR function due to secondary mutations in BRCA1/2 has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pre-treatment and post-progression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase 2 study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed OC. In six of 12 pre-treatment biopsies, a truncation mutation in BRCA1, RAD51C or RAD51D was identified. In five of six paired post-progression biopsies, one or more secondary mutations restored the open reading frame. Four distinct secondary mutations and spatial heterogeneity were observed for RAD51C. In vitro complementation assays and a patient-derived xenograft (PDX), as well as predictive molecular modeling, confirmed that resistance to rucaparib was associated with secondary mutations
Microbiological Lessons Learned from the Space Shuttle
After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune functions were found to be altered. Selected microorganisms were found to become more virulent during spaceflight. The increased knowledge gained on the Space Shuttle resulted in further studies of the host-microbe interactions on the ISS to determine if countermeasures were necessary. Lessons learned from the Space Shuttle Program were integrated into the ISS resulting in the safest space habitat to date
Transfer learning for galaxy morphology from one survey to another
© 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society.Deep Learning (DL) algorithms for morphological classification of galaxies have proven very successful, mimicking (or even improving) visual classifications. However, these algorithms rely on large training samples of labelled galaxies (typically thousands of them). A key question for using DL classifications in future Big Data surveys is how much of the knowledge acquired from an existing survey can be exported to a new dataset, i.e. if the features learned by the machines are meaningful for different data. We test the performance of DL models, trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy survey (DES) using images for a sample of 5000 galaxies with a similar redshift distribution to SDSS. Applying the models directly to DES data provides a reasonable global accuracy ( 90%), but small completeness and purity values. A fast domain adaptation step, consisting in a further training with a small DES sample of galaxies (500-300), is enough for obtaining an accuracy > 95% and a significant improvement in the completeness and purity values. This demonstrates that, once trained with a particular dataset, machines can quickly adapt to new instrument characteristics (e.g., PSF, seeing, depth), reducing by almost one order of magnitude the necessary training sample for morphological classification. Redshift evolution effects or significant depth differences are not taken into account in this study.Peer reviewedFinal Accepted Versio
Simulation of heat transport in low-dimensional oscillator lattices
The study of heat transport in low-dimensional oscillator lattices presents a
formidable challenge. Theoretical efforts have been made trying to reveal the
underlying mechanism of diversified heat transport behaviors. In lack of a
unified rigorous treatment, approximate theories often may embody controversial
predictions. It is therefore of ultimate importance that one can rely on
numerical simulations in the investigation of heat transfer processes in
low-dimensional lattices. The simulation of heat transport using the
non-equilibrium heat bath method and the Green-Kubo method will be introduced.
It is found that one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) momentum-conserving nonlinear lattices display power-law
divergent, logarithmic divergent and constant thermal conductivities,
respectively. Next, a novel diffusion method is also introduced. The heat
diffusion theory connects the energy diffusion and heat conduction in a
straightforward manner. This enables one to use the diffusion method to
investigate the objective of heat transport. In addition, it contains
fundamental information about the heat transport process which cannot readily
be gathered otherwise.Comment: Article published in: Thermal transport in low dimensions: From
statistical physics to nanoscale heat transfer, S. Lepri, ed. Lecture Notes
in Physics, vol. 921, pp. 239 - 274, Springer-Verlag, Berlin, Heidelberg, New
York (2016
Templates for Convex Cone Problems with Applications to Sparse Signal Recovery
This paper develops a general framework for solving a variety of convex cone
problems that frequently arise in signal processing, machine learning,
statistics, and other fields. The approach works as follows: first, determine a
conic formulation of the problem; second, determine its dual; third, apply
smoothing; and fourth, solve using an optimal first-order method. A merit of
this approach is its flexibility: for example, all compressed sensing problems
can be solved via this approach. These include models with objective
functionals such as the total-variation norm, ||Wx||_1 where W is arbitrary, or
a combination thereof. In addition, the paper also introduces a number of
technical contributions such as a novel continuation scheme, a novel approach
for controlling the step size, and some new results showing that the smooth and
unsmoothed problems are sometimes formally equivalent. Combined with our
framework, these lead to novel, stable and computationally efficient
algorithms. For instance, our general implementation is competitive with
state-of-the-art methods for solving intensively studied problems such as the
LASSO. Further, numerical experiments show that one can solve the Dantzig
selector problem, for which no efficient large-scale solvers exist, in a few
hundred iterations. Finally, the paper is accompanied with a software release.
This software is not a single, monolithic solver; rather, it is a suite of
programs and routines designed to serve as building blocks for constructing
complete algorithms.Comment: The TFOCS software is available at http://tfocs.stanford.edu This
version has updated reference
Cyclic animation using Partial differential Equations
YesThis work presents an efficient and fast method for achieving cyclic animation using Partial Differential Equations (PDEs). The boundary-value nature associ- ated with elliptic PDEs offers a fast analytic solution technique for setting up a framework for this type of animation. The surface of a given character is thus cre- ated from a set of pre-determined curves, which are used as boundary conditions so that a number of PDEs can be solved. Two different approaches to cyclic ani- mation are presented here. The first consists of using attaching the set of curves to a skeletal system hold- ing the animation for cyclic motions linked to a set mathematical expressions, the second one exploits the spine associated with the analytic solution of the PDE as a driving mechanism to achieve cyclic animation, which is also manipulated mathematically. The first of these approaches is implemented within a framework related to cyclic motions inherent to human-like char- acters, whereas the spine-based approach is focused on modelling the undulatory movement observed in fish when swimming. The proposed method is fast and ac- curate. Additionally, the animation can be either used in the PDE-based surface representation of the model or transferred to the original mesh model by means of
a point to point map. Thus, the user is offered with the choice of using either of these two animation repre- sentations of the same object, the selection depends on the computing resources such as storage and memory capacity associated with each particular application
- …
