112 research outputs found
Recommended from our members
The pgip family in soybean and three other legume species: evidence for a birth-and-death model of evolution
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) plant cell wall glycoproteins involved in plant immunity. They are typically encoded by gene families with a small number of gene copies whose evolutionary origin has been poorly investigated. Here we report the complete characterization of the full complement of the pgip family in soybean (Glycine max [L.] Merr.) and the characterization of the genomic region surrounding the pgip family in four legume species. Results: BAC clone and genome sequence analyses showed that the soybean genome contains two pgip loci. Each locus is composed of three clustered genes that are induced following infection with the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, and remnant sequences of pgip genes. The analyzed homeologous soybean genomic regions (about 126 Kb) that include the pgip loci are strongly conserved and this conservation extends also to the genomes of the legume species Phaseolus vulgaris L., Medicago truncatula Gaertn. and Cicer arietinum L., each containing a single pgip locus. Maximum likelihood-based gene trees suggest that the genes within the pgip clusters have independently undergone tandem duplication in each species. Conclusions: The paleopolyploid soybean genome contains two pgip loci comprised in large and highly conserved duplicated regions, which are also conserved in bean, M. truncatula and C. arietinum. The genomic features of these legume pgip families suggest that the forces driving the evolution of pgip genes follow the birth-and-death model, similar to that proposed for the evolution of resistance (R) genes of NBS-LRR-type
Optical requirements and modelling of coupling devices for the SAFARI instrument on SPICA
The next generation of space missions targeting far-infrared bands will require large-format arrays of extremely low-noise detectors. The development of Transition Edge Sensors (TES) array technology seems to be a viable solution for future mm-wave to Far-Infrared (FIR) space applications where low noise and high sensitivity is required. In this paper we concentrate on a key element for a high sensitivity TES detector array, that of the optical coupling between the incoming electromagnetic field and the phonon system of the suspended membrane. An intermediate solution between free space coupling and a single moded horn is where over-moded light pipes are used to concentrate energy onto multi-moded absorbers. We present a comparison of modelling techniques to analyse the optical efficiency of such light pipes and their interaction with the front end optics and detector cavity
Ensuring accuracy in the development and application of nucleic acid amplification tests (NAATs) for infectious disease
Diagnostic tests were heralded as crucial during the Coronavirus disease (COVID-19) pandemic with most of the key methods using bioanalytical approaches that detected larger molecules (RNA, protein antigens or antibodies) rather than conventional clinical biochemical techniques. Nucleic Acid Amplification Tests (NAATs), like the Polymerase Chain Reaction (PCR), and other molecular methods, like sequencing (that often work in combination with NAATs), were essential to the diagnosis and management during COVID-19. This was exemplified both early in the pandemic but also later on, following the emergence of new genetic SARS-CoV-2 variants.
The 100 day mission to respond to future pandemic threats highlights the need for effective diagnostics, therapeutics and vaccines. Of the three, diagnostics represents the first opportunity to manage infectious diseases while also being the most poorly supported in terms of the infrastructure needed to demonstrate effectiveness. Where performance targets exist, they are not well served by consensus on how to demonstrate they are being met; this includes analytical factors such as limit of detection (LOD) false positive results as well as how to approach clinical evaluation. The selection of gold standards or use of epidemiological factors such as predictive value, reference ranges or clinical thresholds are seldom correctly considered.
The attention placed on molecular diagnostic tests during COVID-19 illustrates important considerations and assumptions on the use of these methods for infectious disease diagnosis and beyond. In this manuscript, we discuss state-of-the-art approaches to diagnostic evaluation and explore how they may be better tailored to diagnostic techniques like NAATs to maximise the impact of these highly versatile bioanalytical tools, both generally and during future outbreaks
A pilot study demonstrating the altered gut microbiota functionality in stable adults with Cystic Fibrosis
peer-reviewedCystic Fibrosis (CF) and its treatment result in an altered gut microbiota composition compared to non-CF controls. However, the impact of this on gut microbiota functionality has not been extensively characterised. Our aim was to conduct a proof-of-principle study to investigate if measurable changes in gut microbiota functionality occur in adult CF patients compared to controls. Metagenomic DNA was extracted from faecal samples from six CF patients and six non-CF controls and shotgun metagenomic sequencing was performed on the MiSeq platform. Metabolomic analysis using gas chromatography-mass spectrometry was conducted on faecal water. The gut microbiota of the CF group was significantly different compared to the non-CF controls, with significantly increased Firmicutes and decreased Bacteroidetes. Functionality was altered, with higher pathway abundances and gene families involved in lipid (e.g. PWY 6284 unsaturated fatty acid biosynthesis (p = 0.016)) and xenobiotic metabolism (e.g. PWY-5430 meta-cleavage pathway of aromatic compounds (p = 0.004)) in CF patients compared to the controls. Significant differences in metabolites occurred between the two groups. This proof-of-principle study demonstrates that measurable changes in gut microbiota functionality occur in CF patients compared to controls. Larger studies are thus needed to interrogate this further
Osteossíntese diafisiária de tíbia em cães mediante inserção intramedular de pinos de Steinmann pela crista tibial
PCR identification of durum wheat BAC clones containing genes coding for carotenoid biosynthesis enzymes and their chromosome localization
STROBE-metagenomics: a STROBE extension statement to guide the reporting of metagenomics studies
The term metagenomics refers to the use of sequencing methods to simultaneously identify genomic material from all organisms present in a sample, with the advantage of greater taxonomic resolution than culture or other methods. Applications include pathogen detection and discovery, species characterisation, antimicrobial resistance detection, virulence profiling, and study of the microbiome and microecological factors affecting health. However, metagenomics involves complex and multistep processes and there are important technical and methodological challenges that require careful consideration to support valid inference. We co-ordinated a multidisciplinary, international expert group to establish reporting guidelines that address specimen processing, nucleic acid extraction, sequencing platforms, bioinformatics considerations, quality assurance, limits of detection, power and sample size, confirmatory testing, causality criteria, cost, and ethical issues. The guidance recognises that metagenomics research requires pragmatism and caution in interpretation, and that this field is rapidly evolving.Molecular basis of virus replication, viral pathogenesis and antiviral strategie
- …
