793 research outputs found

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    History, Quantification, and the Social Sciences

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67009/2/10.1177_000276427702100202.pd

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    A Measurement of the Decay Asymmetry Parameters in \Xi_{c}^{0}\to \X^{-}\pi^{+}

    Full text link
    Using the CLEO II detector at the Cornell Electron Storage Ring we have measured the Ξc0\Xi_c^{0} decay asymmetry parameter in the decay Ξc0Ξπ+\Xi_c^{0} \to \Xi^{-} \pi^+. We find αΞc0αΞ=0.26±0.18(stat)0.04+0.05(syst)\alpha_{\Xi_c^{0}} \alpha_{\Xi} = 0.26 \pm 0.18{(stat)}^{+0.05}_{-0.04}{(syst)}, using the world average value of αΞ=0.456±0.014\alpha_{\Xi} = -0.456 \pm 0.014 we obtain αΞc0=0.56±0.39(stat)0.09+0.10(syst)\alpha_{\Xi_c^{0}} = -0.56 \pm 0.39{(stat)}^{+0.10}_{-0.09}{(syst)}. The physically allowed range of a decay asymmetry parameter is 1<α<+1-1<\alpha<+1. Our result prefers a negative value: αΞc0\alpha_{\Xi_c^{0}} is <0.1<0.1 at the 90% CL. The central value occupies the middle of the theoretically expected range but is not yet precise enough to choose between models.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review

    Eco-evolutionary dynamics on deformable fitness landscapes

    No full text
    Conventional approaches to modelling ecological dynamics often do not include evolutionary changes in the genetic makeup of component species and, conversely, conventional approaches to modelling evolutionary changes in the genetic makeup of a population often do not include ecological dynamics. But recently there has been considerable interest in understanding the interaction of evolutionary and ecological dynamics as coupled processes. However, in the context of complex multi-species ecosytems, especially where ecological and evolutionary timescales are similar, it is difficult to identify general organising principles that help us understand the structure and behaviour of complex ecosystems. Here we introduce a simple abstraction of coevolutionary interactions in a multi-species ecosystem. We model non-trophic ecological interactions based on a continuous but low-dimensional trait/niche space, where the location of each species in trait space affects the overlap of its resource utilisation with that of other species. The local depletion of available resources creates, in effect, a deformable fitness landscape that governs how the evolution of one species affects the selective pressures on other species. This enables us to study the coevolution of ecological interactions in an intuitive and easily visualisable manner. We observe that this model can exhibit either of the two behavioural modes discussed in the literature; namely, evolutionary stasis or Red Queen dynamics, i.e., continued evolutionary change. We find that which of these modes is observed depends on the lag or latency between the movement of a species in trait space and its effect on available resources. Specifically, if ecological change is nearly instantaneous compared to evolutionary change, stasis results; but conversely, if evolutionary timescales are closer to ecological timescales, such that resource depletion is not instantaneous on evolutionary timescales, then Red Queen dynamics result. We also observe that in the stasis mode, the overall utilisation of resources by the ecosystem is relatively efficient, with diverse species utilising different niches, whereas in the Red Queen mode the organisation of the ecosystem is such that species tend to clump together competing for overlapping resources. These models thereby suggest some basic conditions that influence the organisation of inter-species interactions and the balance of individual and collective adaptation in ecosystems, and likewise they also suggest factors that might be useful in engineering artificial coevolution

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe

    Measurement of tau polarization in W->taunu decays with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    In this paper, a measurement of tau polarization in W->taunu decays is presented. It is measured from the energies of the decay products in hadronic tau decays with a single final state charged particle. The data, corresponding to an integrated luminosity of 24 pb^-1, were collected by the ATLAS experiment at the Large Hadron Collider in 2010. The measured value of the tau polarization is Ptau = -1.06 +/- 0.04 (stat) + 0.05 (syst) - 0.07 (syst), in agreement with the Standard Model prediction, and is consistent with a physically allowed 95% CL interval [-1,-0.91]. Measurements of tau polarization have not previously been made at hadron colliders.Comment: 10 pages plus author list (25 pages total), 4 figures, 4 tables, revised author list, matches published EPJC versio

    Physically based modelling of glacier evolution under climate change in the tropical Andes

    Get PDF
    In recent years, opportunities have opened up to develop and validate glacier models in regions that have previously been infeasible due to observation and/or computational constraints thanks to the availability of globally capable glacier evolution modelling codes and spatially extensive geodetic validation data. The glaciers in the tropical Andes represent some of the least observed and modelled glaciers in the world, making their trajectories under climate change uncertain. Studies to date have typically adopted empirical models of the surface energy balance and ice flow to simulate glacier evolution under climate change, but these may miss important non-linearities in future glacier mass changes. We combine two globally capable modelling codes that provide a more physical representation of these processes:(i) the Joint UK Land Environment Simulator (JULES), which solves the full energy balance of snow and ice, and (ii) the Open Global Glacier Model (OGGM), which solves a flowline representation of the shallow-ice equation to simulate ice flow. JULES–OGGM is applied to over 500 tropical glaciers in the Vilcanota-Urubamba basin in Peru, home to more than 800 000 people that predominantly live in rural communities with low socioeconomic development and high vulnerability to climate change. The model is evaluated against available glaciological and geodetic mass balance observations to assess the potential for using the modelling workflow to simulate tropical glacier evolution over decadal timescales. We show that the JULES–OGGM model can be parameterized to capture decadal (2000–2018) mass changes in individual glaciers, but we also show that limitations in the JULES prognostic snow model prevent accurate replication of observed surface albedo fluctuations and mass changes across all glaciers simultaneously. Specifically, the model cannot replicate the feedbacks between the driving meteorology, surface energy balance, ablation processes, and snow darkening. Only by forcing the model with observed net radiation variables were we able to capture observed surface albedo dynamics. When driven with statistically downscaled climate change projections, the JULES–OGGM simulations indicate that, contrary to point-scale energy balance studies, sublimation plays a very minor role in glacier evolution at the basin scale and does not bring about significant non-linearities in the glacier response to climate warming. The ensemble mean simulation estimates that total glacier mass will decrease to 17 % and 6 % of that in 2000 by 2100 for Representative Concentration Pathway (RCP) 4.5 and RCP8.5, respectively, which is more conservative than estimates from some other global glacier models

    Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √sNN = 2.76 TeV with the ATLAS detector

    Get PDF
    Correlations between the elliptic or triangular flow coefficients vm (m=2 or 3) and other flow harmonics vn (n=2 to 5) are measured using √sNN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb−1. The vm−vn correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v3 is found to be anticorrelated with v2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε2 and ε3. However, it is observed that v4 increases strongly with v2, and v5 increases strongly with both v2 and v3. The trend and strength of the vm−vn correlations for n=4 and 5 are found to disagree with εm−εn correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v22 or of v2v3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v4 and v5 are found to be consistent with previously measured event-plane correlations
    corecore