4,111 research outputs found

    Ultrasonic Attenuation in Clean d-Wave Superconductors

    Full text link
    We calculate the low temperature longitudinal ultrasonic attenuation rate αS\alpha_S in clean d-wave superconductors. We consider the contribution of previously ignored processes involving the excitation of a pair of quasi-holes or quasi-particles. These processes, which are forbidden by energy conservation in conventional s-wave superconductors, have a finite phase space in d-wave superconductors due to the presence of nodes in the gap which give rise to soft low-energy electronic excitations. We find the contribution to αS\alpha_S from these processes to be proportional to TT in the regime kBTQvΔΔ0k_B T\ll Qv_{\Delta} \ll \Delta_0,(ultra-low temperature regime) and to be proportional to 1/T in the region QvFkBTΔ0Qv_F \ll k_BT \ll \Delta_0, (low temperature regime) where Q{\bf Q} is the ultrasound wave-vector and Δ0\Delta_0 is the maximum gap amplitude. We explicitly evaluate these terms, for parameters appropriate to the cuprates, for Q{\bf Q} along the nodal and the antinodal directions and compare it with the contribution from processes considered earlier(I.Vekhter et al {\it Phys. Rev.}{\bf B59}, 7123(1999)). In the ultra-low temperature regime, the processes considered by us make a contribution which is smaller by about a factor of 10 for Q{\bf Q} along the nodal direction, while along the antinodal direction it is larger by a factor of 100 or so. In the low temperature regime on the other hand the contribution made by these terms is small. However taken together with the original terms we describe a possible way to evaluate the parameter vF/vΔv_F/v_\Delta.Comment: 9 pages, RevTex, accepted for publication in Physica

    D-optimal designs via a cocktail algorithm

    Get PDF
    A fast new algorithm is proposed for numerical computation of (approximate) D-optimal designs. This "cocktail algorithm" extends the well-known vertex direction method (VDM; Fedorov 1972) and the multiplicative algorithm (Silvey, Titterington and Torsney, 1978), and shares their simplicity and monotonic convergence properties. Numerical examples show that the cocktail algorithm can lead to dramatically improved speed, sometimes by orders of magnitude, relative to either the multiplicative algorithm or the vertex exchange method (a variant of VDM). Key to the improved speed is a new nearest neighbor exchange strategy, which acts locally and complements the global effect of the multiplicative algorithm. Possible extensions to related problems such as nonparametric maximum likelihood estimation are mentioned.Comment: A number of changes after accounting for the referees' comments including new examples in Section 4 and more detailed explanations throughou

    Ultrasonic Attenuation in the Vortex State of d-wave Superconductors

    Full text link
    We calculate the low temperature quasi-particle contribution to the ultrasonic attenuation rate in the mixed state of d-wave superconductors. Our calculation is performed within the semi-classical approximation using quasi-particle energies that are Doppler shifted, with respect to their values in the Meissner phase, by the supercurrent associated with the vortices. We find that the attenuation at low temperatures and at fields Hc1HHc2 H_{c1} \leq H \ll H_{c2} has a temperature independent contribution which is proportional to H\surd H where HH is the applied magnetic field. We indicate how our result in combination with the zero-field result for ultrasonic attenuation can be used to calculate one of the parameters vFv_F, Hc2H_{c2} or ξ\xi given the values for any two of them.Comment: 10 pages, RevTeX, submitted to Physica

    Ni-Cr textured substrates with reduced ferromagnetism for coated conductor applications

    Full text link
    A series of biaxially textured Ni(1-x)Cr(x) materials, with compositions x = 0, 7, 9, 11, and 13 at % Cr, have been studied for use as substrate materials in coated conductor applications with high temperature superconductors. The magnetic properties were investigated, including the hysteretic loss in a Ni-7 at % Cr sample that was controllably deformed; for comparison, the loss was also measured in a similarly deformed pure Ni substrate. Complementary X-ray diffraction studies show that thermo-mechanical processing produces nearly complete {100} cube texturing, as desired for applications.Comment: PDF only; 19 pp., incl 10 figure

    Low temperature superlattice in monoclinic PZT

    Get PDF
    TEM has shown that the strongly piezoelectric material Pb(Zr0.52Ti0.48)O3 separates into two phases at low temperatures. The majority phase is the monoclinic phase previously found by x-ray diffraction. The minority phase, with a nanoscale coherence length, is a slightly distorted variant of the first resulting from the anti-phase rotation of the oxygen octahedra about [111]. This work clears up a recent controversy about the origin of superlattice peaks in these materials, and supports recent theoretical results predicting the coexistence of ferroelectric and rotational instabilities.Comment: REVTeX4, 4 eps figures embedded. JPG version of figs. 2&4 is also include

    Large time wellposdness to the 3-D Capillary-Gravity Waves in the long wave regime

    Full text link
    In the regime of weakly transverse long waves, given long-wave initial data, we prove that the nondimensionalized water wave system in an infinite strip under influence of gravity and surface tension on the upper free interface has a unique solution on [0,{T}/\eps] for some \eps independent of constant T.T. We shall prove in the subsequent paper \cite{MZZ2} that on the same time interval, these solutions can be accurately approximated by sums of solutions of two decoupled Kadomtsev-Petviashvili (KP) equations.Comment: Split the original paper(The long wave approximation to the 3-D capillary-gravity waves) into two parts, this is the first on

    Geometric Phase: a Diagnostic Tool for Entanglement

    Full text link
    Using a kinematic approach we show that the non-adiabatic, non-cyclic, geometric phase corresponding to the radiation emitted by a three level cascade system provides a sensitive diagnostic tool for determining the entanglement properties of the two modes of radiation. The nonunitary, noncyclic path in the state space may be realized through the same control parameters which control the purity/mixedness and entanglement. We show analytically that the geometric phase is related to concurrence in certain region of the parameter space. We further show that the rate of change of the geometric phase reveals its resilience to fluctuations only for pure Bell type states. Lastly, the derivative of the geometric phase carries information on both purity/mixedness and entanglement/separability.Comment: 13 pages 6 figure

    Sodium atoms and clusters on graphite: a density functional study

    Full text link
    Sodium atoms and clusters (N<5) on graphite (0001) are studied using density functional theory, pseudopotentials and periodic boundary conditions. A single Na atom is observed to bind at a hollow site 2.45 A above the surface with an adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates a flat potential energy surface. Increased Na coverage results in a weak adsorbate-substrate interaction, which is evident in the larger separation from the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The binding is weak for Na_2, which has a full valence electron shell. The presence of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and both Na_4 and Na_5 are distorted from planarity. The calculated formation energies suggest that clustering of atoms is energetically favorable, and that the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite than in the gas phase. Analysis of the lateral charge density distributions of Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure

    Epitaxially strained [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and PbTiO3_3 from first principles

    Full text link
    The effect of layer-by-layer heterostructuring and epitaxial strain on lattice instabilities and related ferroelectric properties is investigated from first principles for the [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and pure PbTiO3_3 on a cubic substrate. The results for the superlattice show an enhancement of the stability of the monoclinic r-phase with respect to pure PbTiO3_3. Analysis of the lattice instabilities of the relaxed centrosymmetric reference structure computed within density functional perturbation theory suggests that this results from the presence of two unstable zone-center modes, one confined in the PbTiO3_3 layer and one in the PbZrO3_3 layer, which produce in-plane and normal components of the polarization, respectively. The zero-temperature dielectric response is computed and shown to be enhanced not only near the phase boundaries, but throughout the r-phase. Analysis of the analogous calculation for pure PbTiO3_3 is consistent with this interpretation, and suggests useful approaches to engineering the dielectric properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure

    Site investigation for the effects of vegetation on ground stability

    Get PDF
    The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects)
    corecore