4,454 research outputs found
Metallic conductivity and a Ca substitution study of NaRh2O4 comprising a double chain system
The metallic compound NaRh2O4 forms a full range solid solution to the
insulating phase CaRh2O4. At a Na concentration of 0.25 moles per formula unit,
we found an unexpected contribution to the specific heat at low temperature [K.
Yamaura et al. Chem. Mater. 17 (2005) 359]. To address this issue, specific
heat and ac and dc magnetic susceptibilities were additionally measured under a
variety of conditions for the Na0.25 sample. A new set of data clearly indicate
the additional specific heat is magnetic in origin; however, the magnetic
entropy is fairly small (~1 % of Schottky term for a simple splitting doublet),
and there is no other evidence to suggest that a magnetic phase transition is
responsible for the anomalous specific heat.Comment: Accepted for publication in a special issue of Physica B (the
proceedings of SCES05
Azimuthal asymmetry in transverse energy flow in nuclear collisions at high energies
The azimuthal pattern of transverse energy flow in nuclear collisions at RHIC
and LHC energies is considered. We show that the probability distribution of
the event-by-event azimuthal disbalance in transverse energy flow is
essentially sensitive to the presence of the semihard minijet component.Comment: 6 pages, 2 figure
Hopping Conduction in Disordered Carbon Nanotubes
We report electrical transport measurements on individual disordered carbon
nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template.
In both as-grown and annealed types of nanotubes, the low-field conductance
shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that
hopping conduction is the dominant transport mechanism, albeit with different
disorder-related coefficients T_{0}. The field dependence of low-temperature
conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at
sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit
weak positive magnetoresistance at low T = 1.7 K. Comparison with theory
indicates that our data are best explained by Coulomb-gap variable range
hopping conduction and permits the extraction of disorder-dependent
localization length and dielectric constant.Comment: 10 pages, 5 figure
Study of intercalation and deintercalation of Na_xCoO_2 yH_2O single crystals
Single crystals of NaxCoO2 with beta-phase (x=0.55, 0.60 and 0.65),
alpha'-phase (x=0.75) and alpha-phase (x=0.9, 1.0) have been grown by the
floating zone technique. The Na-extraction and hydration were carried out for
the alpha'-sample to get superconducting phase of NaxCoO2.yH2O (x~0.3, y~1.3).
Hydrated single crystals exhibit cracked layers perpendicular to the c-axis due
to a large expansion when the water is inserted into the structure. A study of
intercalation/deintercalation was performed to determine the stability of the
hydrated phase and effects of hydration on the structure of the compound. X-ray
diffraction and Thermogravimetric experiments are used to monitor the process
of water molecules accommodated in and removed from the crystal lattice. The
initial intercalation process takes place with two-water molecules
corresponding to y=0.6) inserted in a formula unit, followed by a group of four
(y=1.3) to form a cluster of Na(H2O)4. Thermogravimetric analysis suggests that
the deintercalation occurs with the removal of the water molecules one by one
from the hydrated cluster at elevated temperatures of approximately 50, 100,
200 and 300 C, respectively. Our investigations reveal that the hydration
process is dynamic and that water molecule inter- and deintercalation follow
different reaction paths in an irreversible way.Comment: 15 pages, 6 figures, figures with higher resolution by email request
from the corresponding autho
Convergence and Refinement of the Wang-Landau Algorithm
Recently, Wang and Landau proposed a new random walk algorithm that can be
very efficiently applied to many problems. Subsequently, there has been
numerous studies on the algorithm itself and many proposals for improvements
were put forward. However, fundamental questions such as what determines the
rate of convergence has not been answered. To understand the mechanism behind
the Wang-Landau method, we did an error analysis and found that a steady state
is reached where the fluctuations in the accumulated energy histogram saturate
at values proportional to . This value is closely related to
the error corrections to the Wang-Landau method. We also study the rate of
convergence using different "tuning" parameters in the algorithm.Comment: 6 pages, submitted to Comp. Phys. Com
Universal quantum control in irreducible state-space sectors: application to bosonic and spin-boson systems
We analyze the dynamical-algebraic approach to universal quantum control
introduced in P. Zanardi, S. Lloyd, quant-ph/0305013. The quantum state-space
encoding information decomposes into irreducible sectors and
subsystems associated to the group of available evolutions. If this group
coincides with the unitary part of the group-algebra \CC{\cal K} of some
group then universal control is achievable over the -irreducible components of . This general strategy is applied to
different kind of bosonic systems. We first consider massive bosons in a
double-well and show how to achieve universal control over all
finite-dimensional
Fock sectors. We then discuss a multi-mode massless case giving the
conditions for generating the whole infinite-dimensional multi-mode
Heisenberg-Weyl enveloping-algebra. Finally we show how to use an auxiliary
bosonic mode coupled to finite-dimensional systems to generate high-order
non-linearities needed for universal control.Comment: 10 pages, LaTeX, no figure
Quantum information processing using Josephson junctions coupled through cavities
Josephson junctions have been shown to be a promising solid-state system for
implementation of quantum computation. The significant two-qubit gates are
generally realized by the capacitive coupling between the nearest neighbour
qubits. We propose an effective Hamiltonian to describe charge qubits coupled
through the cavity. We find that nontrivial two-qubit gates may be achieved by
this coupling. The ability to interconvert localized charge qubits and flying
qubits in the proposed scheme implies that quantum network can be constructed
using this large scalable solid-state system.Comment: 5 pages, to appear in Phys Rev A; typos corrected, solutions in last
eqs. correcte
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
We describe an efficient Monte Carlo algorithm using a random walk in energy
space to obtain a very accurate estimate of the density of states for classical
statistical models. The density of states is modified at each step when the
energy level is visited to produce a flat histogram. By carefully controlling
the modification factor, we allow the density of states to converge to the true
value very quickly, even for large systems. This algorithm is especially useful
for complex systems with a rough landscape since all possible energy levels are
visited with the same probability. In this paper, we apply our algorithm to
both 1st and 2nd order phase transitions to demonstrate its efficiency and
accuracy. We obtained direct simulational estimates for the density of states
for two-dimensional ten-state Potts models on lattices up to
and Ising models on lattices up to . Applying this approach to
a 3D spin glass model we estimate the internal energy and entropy at
zero temperature; and, using a two-dimensional random walk in energy and
order-parameter space, we obtain the (rough) canonical distribution and energy
landscape in order-parameter space. Preliminary data suggest that the glass
transition temperature is about 1.2 and that better estimates can be obtained
with more extensive application of the method.Comment: 22 pages (figures included
Theory of Magnetic Field Induced Spin Density Wave in High Temperature Superconductors
The induction of spin density wave (SDW) and charge density wave (CDW)
orderings in the mixed state of high superconductors (HTS) is
investigated by using the self-consistent Bogoliubov-de Gennes equations based
upon an effective model Hamiltonian with competing SDW and d-wave
superconductivity interactions. For optimized doping sample, the modulation of
the induced SDW and its associated CDW is determined by the vortex lattice and
their patterns obey the four-fold symmetry. By deceasing doping level, both SDW
and CDW show quasi-one dimensional like behavior, and the CDW has a period just
half that of the SDW along one direction. From the calculation of the local
density of states (LDOS), we found that the majority of the quasi-particles
inside the vortex core are localized. All these results are consistent with
several recent experiments on HTS
Temperature dependence of Vortex Charges in High Temperature Superconductors
Using a model Hamiltonian with d-wave superconductivity and competing
antiferromagnetic (AF) interactions, the temperature (T) dependence of the
vortex charge in high T_c superconductors is investigated by numerically
solving the Bogoliubov-de Gennes equations. The strength of the induced AF
order inside the vortex core is T dependent. The vortex charge could be
negative when the AF order with sufficient strength is present at low
temperatures. At higher temperatures, the AF order may be completely suppressed
and the vortex charge becomes positive. A first order like transition in the T
dependent vortex charge is seen near the critical temperature T_{AF}. For
underdoped sample, the spatial profiles of the induced spin-density wave and
charge-density wave orders could have stripe like structures at T < T_s, and
change to two-dimensional isotropic ones at T > T_s. As a result, a vortex
charge discontinuity occurs at T_s.Comment: 5 pages, 5 figure
- …
