744 research outputs found
Expected Performance of CryoArray
WIMP-nucleon cross sections below 10^(-9) pb may be probed by ton-scale
experiments with low thresholds and background rates ~20 events per year. An
array of cryogenic detectors ("CryoArray") could perform well enough to reach
this goal. Sufficient discrimination and background suppression of photons has
already been demonstrated. Reduction of neutron backgrounds may be achieved by
siting the experiment deep enough. Removal of the surface-electron backgrounds
alone has not yet been demonstrated, but the reductions required even for this
troublesome background are quite modest and appear achieveable.Comment: 4 pages, 2 figures. Talk at DM2002 Conference, Marina del Rey, CA,
Feb 20-22, 200
Characteristics of Cosmic Time
The nature of cosmic time is illuminated using Hamilton-Jacobi theory for
general relativity. For problems of interest to cosmology, one may solve for
the phase of the wavefunctional by using a line integral in superspace. Each
contour of integration corresponds to a particular choice of time hypersurface,
and each yields the same answer. In this way, one can construct a covariant
formalism where all time hypersurfaces are treated on an equal footing. Using
the method of characteristics, explicit solutions for an inflationary epoch
with several scalar fields are given. The theoretical predictions of double
inflation are compared with recent galaxy data and large angle microwave
background anisotropies.Comment: 20 pages, RevTex using Latex 2.09, Submitted to Physical Review D Two
figures included in fil
Today's View on Strangeness
There are several different experimental indications, such as the
pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest
that the nucleon wave function contains a hidden s bar s component. This is
expected in chiral soliton models, which also predicted the existence of new
exotic baryons that may recently have been observed. Another hint of hidden
strangeness in the nucleon is provided by copious phi production in various N
bar N annihilation channels, which may be due to evasions of the
Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s
bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic
scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the
International Conference on Parity Violation and Hadronic Structure,
Grenoble, June 200
Conditions for spontaneous homogenization of the Universe
The present-day Universe appears to be homogeneous on very large scales. Yet
when the casual structure of the early Universe is considered, it becomes
apparent that the early Universe must have been highly inhomogeneous. The
current paradigm attempts to answer this problem by postulating the inflation
mechanism However, inflation in order to start requires a homogeneous patch of
at least the horizon size. This paper examines if dynamical processes of the
early Universe could lead to homogenization. In the past similar studies seem
to imply that the set of initial conditions that leads to homogenization is of
measure zero. This essay proves contrary: a set of initial conditions for
spontaneous homogenization of cosmological models can form a set of non-zero
measure.Comment: 7 pages. Fifth Award in the 2010 Gravity Research Foundation essay
competitio
Magnetic states at the surface of alpha Fe2O3 thin films doped with Ti, Zn, or Sn
The spin states at the surface of epitaxial thin films of hematite, both
undoped and doped with 1% Ti, Sn or Zn, respectively, were probed with x-ray
magnetic linear dichroism (XMLD) spectroscopy. Morin transitions were observed
for the undoped (T_M~200 K) and Sn-doped (T_M~300 K) cases, while Zn and
Ti-doped samples were always in the high and low temperature phases,
respectively. In contrast to what has been reported for bulk hematite doped
with the tetravalent ions Sn4+ and Ti4+, for which T_M dramatically decreases,
these dopants substantially increase T_M in thin films, far exceeding the bulk
values. The normalized Fe LII-edge dichroism for T<T_M does not strongly depend
on doping or temperature, except for an apparent increase of the peak
amplitudes for T<100 K. We observed magnetic field-induced inversions of the
dichroism peaks. By applying a magnetic field of 6.5 T on the Ti-doped sample,
a transition into the T>T_M state was achieved. The temperature dependence of
the critical field for the Sn-doped sample was characterized in detail. It was
demonstrated the sample-to-sample variations of the Fe LIII-edge spectra were,
for the most part, determined solely by the spin orientation state.
Calculations of the polarization-depedent spectra based on a spin-multiplet
model were in reasonable agreement with the experiment and showed a mixed
excitation character of the peak structures.Comment: 8 pages, 8 figure
Colliders and Cosmology
Dark matter in variations of constrained minimal supersymmetric standard
models will be discussed. Particular attention will be given to the comparison
between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure
Particle Production and Gravitino Abundance after Inflation
Thermal history after inflation is studied in a chaotic inflation model with
supersymmetric couplings of the inflaton to matter fields. Time evolution
equation is solved in a formalism that incorporates both the back reaction of
particle production and the cosmological expansion. The effect of the
parametric resonance gives rise to a rapid initial phase of the inflaton decay
followed by a slow stage of the Born term decay. Thermalization takes place
immediately after the first explosive stage for a medium strength of the
coupling among created particles. As an application we calculate time evolution
of the gravitino abundance that is produced by ordinary particles directly
created from the inflaton decay, which typically results in much more enhanced
yield than what a naive estimate based on the Born term would suggest.Comment: 23 pages + 13 figure
Factors Influencing the Participation of Older People in Clinical Trials : Data Analysis from the MAVIS Trial
Peer reviewedPostprin
Dicyclic Horizontal Symmetry and Supersymmetric Grand Unification
It is shown how to use as horizontal symmetry the dicyclic group in a supersymmetric unification where
one acts on the first and second families, in a horizontal doublet, and
the other acts on the third. This can lead to acceptable quark masses and
mixings, with an economic choice of matter supermultiplets, and charged lepton
masses can be accommodated.Comment: 10 pages, LaTe
Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search
The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si
detectors to search for Weakly Interacting Massive Particles (WIMPs) via their
elastic-scattering interactions with nuclei while discriminating against
interactions of background particles. For recoil energies above 10 keV, events
due to background photons are rejected with >99.9% efficiency, and surface
events are rejected with >95% efficiency. The estimate of the background due to
neutrons is based primarily on the observation of multiple-scatter events that
should all be neutrons. Data selection is determined primarily by examining
calibration data and vetoed events. Resulting efficiencies should be accurate
to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed
fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent
with an earlier analysis with a more restrictive fiducial-volume cut.
Twenty-three WIMP candidate events are observed, but these events are
consistent with a background from neutrons in all ways tested. Resulting limits
on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude
unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}.
These limits border, but do not exclude, parameter space allowed by
supersymmetry models and accelerator constraints. Results are compatible with
some regions reported as allowed at 3-sigma by the annual-modulation
measurement of the DAMA collaboration. However, under the assumptions of
standard WIMP interactions and a standard halo, the results are incompatible
with the DAMA most likely value at >99.9% CL, and are incompatible with the
model-independent annual-modulation signal of DAMA at 99.99% CL in the
asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D;
v.2:clarified conclusions, added content and references based on referee's
and readers' comments; v.3: clarified introductory sections, added figure
based on referee's comment
- …
