1,078 research outputs found
Feasibility of simultaneous intracranial EEG-fMRI in humans: a safety study
In epilepsy patients who have electrodes implanted in their brains as part of their pre-surgical assessment, simultaneous intracranial EEG and fMRI (icEEG-fMRI) may provide important localising information and improve understanding of the underlying neuropathology. However, patient safety during icEEG-fMRI has not been addressed.
Here the potential health hazards associated with icEEG-fMRI were evaluated theoretically and the main risks identified as: mechanical forces on electrodes from transient magnetic effects, tissue heating due to interaction with the pulsed RF fields and tissue stimulation due to interactions with the switched magnetic gradient fields. These potential hazards were examined experimentally in vitro on a Siemens 3 T Trio, 1.5 T Avanto and a GE 3 T Signa Excite scanner using a Brain Products MR compatible EEG system.
No electrode flexion was observed. Temperature measurements demonstrated that heating well above guideline limits can occur. However heating could be kept within safe limits (< 1.0 °C) by using a head transmit RF coil, ensuring EEG cable placement to exit the RF coil along its central z-axis, using specific EEG cable lengths and limiting MRI sequence specific absorption rates (SARs). We found that the risk of tissue damage due to RF-induced heating is low provided implant and scanner specific SAR limits are observed with a safety margin used to account for uncertainties (e.g. in scanner-reported SAR). The observed scanner gradient switching induced current (0.08 mA) and charge density (0.2 μC/cm2) were well within safety limits (0.5 mA and 30 μC/cm2, respectively). Site-specific testing and a conservative approach to safety are required to avoid the risk of adverse events
Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating
Purpose:
To investigate heating during postimplantation localization of intracranial electroencephalograph (EEG) electrodes by MRI.
Materials and Methods:
A phantom patient with a realistic arrangement of electrodes was used to simulate tissue heating during MRI. Measurements were performed using 1.5 Tesla (T) and 3T MRI scanners, using head- and body-transmit RF-coils. Two electrode-lead configurations were assessed: a standard condition with external electrode-leads physically separated and a fault condition with all lead terminations electrically shorted.
Results:
Using a head-transmit-receive coil and a 2.4 W/kg head-average specific absorption rate (SAR) sequence, at 1.5T the maximum temperature change remained within safe limits (<1°C). Under standard conditions, we observed greater heating (2.0°C) at 3T on one system and similar heating (<1°C) on a second, compared with the 1.5T system. In all cases these temperature maxima occurred at the grid electrode. In the fault condition, larger temperature increases were observed at both field strengths, particularly for the depth electrodes. Conversely, with a body-transmit coil at 3T significant heating (+6.4°C) was observed (same sequence, 1.2/0.5 W/kg head/body-average) at the grid electrode under standard conditions, substantially exceeding safe limits. These temperature increases neglect perfusion, a major source of heat dissipation in vivo.
Conclusion:
MRI for intracranial electrode localization can be performed safely at both 1.5T and 3T provided a head-transmit coil is used, electrode leads are separated, and scanner-reported SARs are limited as determined in advance for specific scanner models, RF coils and implant arrangements. Neglecting these restrictions may result in tissue injury
Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds
We investigated safety issues and potential experimental confounds when performing functional magnetic resonance imaging (fMRI) investigations in human subjects with fully implanted, active, deep brain stimulation (DBS) systems. Measurements of temperature and induced voltage were performed in an in vitro arrangement simulating bilateral DBS during magnetic resonance imaging (MRI) using head transmit coils in both 1.5 and 3.0 T MRI systems. For MRI sequences typical of an fMRI study with coil-averaged specific absorption rates (SARs) less than 0.4 W/kg, no MRI-induced temperature change greater than the measurement sensitivity (0.1 °C) was detected at 1.5 T, and at 3 T temperature elevations were less than 0.5 °C, i.e. within safe limits. For the purposes of demonstration, MRI pulse sequences with SARs of 1.45 W/kg and 2.34 W/kg (at 1.5 T and 3 T, respectively) were prescribed and elicited temperature increases (> 1 °C) greater than those considered safe for human subjects. Temperature increases were independent of the presence or absence of active stimulator pulsing. At both field strengths during echo planar MRI, the perturbations of DBS equipment performance were sufficiently slight, and temperature increases sufficiently low to suggest that thermal or electromagnetically mediated experimental confounds to fMRI with DBS are unlikely. We conclude that fMRI studies performed in subjects with subcutaneously implanted DBS units can be both safe and free from DBS-specific experimental confounds. Furthermore, fMRI in subjects with fully implanted rather than externalised DBS stimulator units may offer a significant safety advantage. Further studies are required to determine the safety of MRI with DBS for other MRI systems, transmit coil configurations and DBS arrangements
Gravitational Waves in a Spatially Closed deSitter Spacetime
Perturbation of gravitational fields may be decomposed into scalar,vector and
tensor components.In this paper we concern with the evolution of tensor mode
perturbations in a spatially closed deSitter background of RW form. It may be
thought as gravitional waves in a classical description. The chosen background
has the advantage of to be maximally extended and symmetric. The spatially flat
models commonly emerge from inflationary scenarios are not completely
extended.We first derive the general weak field equations.Then the form of the
field equations in two special cases, planar and spherical waves are obtained
and their solutions are presented. We conclued with discussing the significance
of the results and their implications.Comment: 16 pages,no figure
On the Computational Complexity of Measuring Global Stability of Banking Networks
Threats on the stability of a financial system may severely affect the
functioning of the entire economy, and thus considerable emphasis is placed on
the analyzing the cause and effect of such threats. The financial crisis in the
current and past decade has shown that one important cause of instability in
global markets is the so-called financial contagion, namely the spreading of
instabilities or failures of individual components of the network to other,
perhaps healthier, components. This leads to a natural question of whether the
regulatory authorities could have predicted and perhaps mitigated the current
economic crisis by effective computations of some stability measure of the
banking networks. Motivated by such observations, we consider the problem of
defining and evaluating stabilities of both homogeneous and heterogeneous
banking networks against propagation of synchronous idiosyncratic shocks given
to a subset of banks. We formalize the homogeneous banking network model of
Nier et al. and its corresponding heterogeneous version, formalize the
synchronous shock propagation procedures, define two appropriate stability
measures and investigate the computational complexities of evaluating these
measures for various network topologies and parameters of interest. Our results
and proofs also shed some light on the properties of topologies and parameters
of the network that may lead to higher or lower stabilities.Comment: to appear in Algorithmic
Footprints preserve terminal Pleistocene hunt? Human-sloth interactions in North America
Predator-prey interactions revealed by vertebrate trace fossils are extremely rare. We present footprint evidence
from White Sands National Monument in New Mexico for the association of sloth and human trackways.
Geologically, the sloth and human trackways were made contemporaneously, and the sloth trackways show
evidence of evasion and defensive behavior when associated with human tracks. Behavioral inferences from
these trackways indicate prey selection and suggest that humans were harassing, stalking, and/or hunting
the now-extinct giant ground sloth in the terminal Pleistocene
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Simulation of thermal conductivity and heat transport in solids
Using molecular dynamics (MD) with classical interaction potentials we
present calculations of thermal conductivity and heat transport in crystals and
glasses. Inducing shock waves and heat pulses into the systems we study the
spreading of energy and temperature over the configurations. Phonon decay is
investigated by exciting single modes in the structures and monitoring the time
evolution of the amplitude using MD in a microcanonical ensemble. As examples,
crystalline and amorphous modifications of Selenium and are
considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in
PR
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
- …
