401 research outputs found

    Efficient Raw Signal Generation Based on Equivalent Scatterer and Subaperture Processing for SAR with Arbitrary Motion

    Get PDF
    An efficient SAR raw signal generation method based on equivalent scatterer and subaperture processing is proposed in this paper. It considers the radar’s motion track, which can obtain the precise raw signal for the real SAR. First, the imaging geometry with arbitrary motion is established, and then the scene is divided into several equidistant rings. Based on the equivalent scatterer model, the approximate expression of the SAR system transfer function is derived, thus each pulse’s raw signal can be generated by the convolution of the transmitted signal and system transfer function, performed by the fast Fourier transform (FFT). To further improve the simulation efficiency, the subaperture and polar subscene processing is used. The system transfer function of pluses for the same subaperture is calculated simultaneously by the weighted sum of all subscenes’ equivalent backscattering coefficient in the same equidistant ring, performed by the nonuniform FFT (NUFFT). The method only involves the FFT, NUFFT and complex multiplication operations, which means the easier implementation and higher efficiency. Simulation results are given to prove the validity of this method

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Magnetic enhancement of Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide by mechanical milling

    Full text link
    We report the magnetic properties of mechanically milled Co0.2_{0.2}Zn0.8_{0.8}Fe2_2O4_4 spinel oxide. After 24 hours milling of the bulk sample, the XRD spectra show nanostructure with average particle size \approx 20 nm. The as milled sample shows an enhancement in magnetization and ordering temperature compared to the bulk sample. If the as milled sample is annealed at different temperatures for the same duration, recrystallization process occurs and approaches to the bulk structure on increasing the annealing temperatures. The magnetization of the annealed samples first increases and then decreases. At higher annealing temperature (\sim 10000^{0}C) the system shows two coexisting magnetic phases {\it i.e.}, spin glass state and ferrimagnetic state, similar to the as prepared bulk sample. The room temperature M\"{o}ssbauer spectra of the as milled sample, annealed at 3000^{0}C for different durations (upto 575 hours), suggest that the observed change in magnetic behaviour is strongly related with cations redistribution between tetrahedral (A) and octahedral (O) sites in the spinel structure. Apart from the cation redistribution, we suggest that the enhancement of magnetization and ordering temperature is related with the reduction of B site spin canting and increase of strain induced anisotropic energy during mechanical milling.Comment: 14 pages LaTeX, 10 ps figure

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method

    The σ\sigma pole in J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+ee^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0KK+D^0 \to K^- K^+, π+π\pi^+ \pi^-, KK+π+πK^- K^+ \pi^+ \pi^- and π+π+ππ\pi^+ \pi^+ \pi^- \pi^-, D+K0ˉK+D^+ \to \bar{K^0} K^+, KK+π+K^- K^+ \pi^+ and ππ+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    Phytomelatonin: Assisting plants to survive and thrive

    Get PDF
    This review summarizes the advances that have been made in terms of the identified functions of melatonin in plants. Melatonin is an endogenously-produced molecule in all plant species that have been investigated. Its concentration in plant organs varies in different tissues, e.g., roots versus leaves, and with their developmental stage. As in animals, the pathway of melatonin synthesis in plants utilizes tryptophan as an essential precursor molecule. Melatonin synthesis is inducible in plants when they are exposed to abiotic stresses (extremes of temperature, toxins, increased soil salinity, drought, etc.) as well as to biotic stresses (fungal infection). Melatonin aids plants in terms of root growth, leaf morphology, chlorophyll preservation and fruit development. There is also evidence that exogenously-applied melatonin improves seed germination, plant growth and crop yield and its application to plant products post-harvest shows that melatonin advances fruit ripening and may improve food quality. Since melatonin was only discovered in plants two decades ago, there is still a great deal to learn about the functional significance of melatonin in plants. It is the hope of the authors that the current review will serve as a stimulus for scientists to join the endeavor of clarifying the function of this phylogenetically-ancient molecule in plants and particularly in reference to the mechanisms by which melatonin mediates its multiple actions

    A study of charged kappa in J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±7714+18)i(256±4022+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψK(892)+K(892)J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.190.32+0.11)×103(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25
    corecore