19,811 research outputs found
Environmental problems and opportunities of the peri-urban interface and their impact upon the poor
The objective of this document is to provide an overview of the problems and opportunities of the peri-urban interface (PUI) with regard to the broad concerns of environmentalsustainability and poverty
Simultaneous release of glutamate and acetylcholine from single magnocellular "cholinergic" basal forebrain neurons
Basal forebrain (BF) neurons provide the principal cholinergic drive to the hippocampus and cortex. Their degeneration is associated with the cognitive defects of Alzheimer's disease. Immunohistochemical studies suggest that some of these neurons contain glutamate, so might also release it. To test this, we made microisland cultures of single BF neurons from 12- to 14-d-old rats. Over 1-8 weeks in culture, neuronal processes made autaptic connections onto the neuron. In 34 of 36 cells tested, a somatically generated action potential was followed by a short-latency EPSC that was blocked by 1 mM kynurenic acid, showing that they released glutamate. To test whether the same neuron also released acetylcholine, we placed a voltage-clamped rat myoball expressing nicotinic receptors in contact with a neurite. In six of six neurons tested, the glutamatergic EPSC was accompanied by a nicotinic (hexamethonium-sensitive) myoball current. Stimulation of the M-2-muscarinic presynaptic receptors ( characterized using tripitramine and pirenzepine) produced a parallel inhibition of autaptic glutamatergic and myoball nicotinic responses; metabotropic glutamate receptor stimulation produced similar but less consistent and weaker effects. Atropine enhanced the glutamatergic EPSCs during repetitive stimulation by 25 +/- 6%; the anti-cholinesterase neostigmine reduced the train EPSCs by 37 +/- 6%. Hence, synaptically released acetylcholine exerted a negative-feedback inhibition of coreleased glutamate. We conclude that most cholinergic basal forebrain neurons are capable of releasing glutamate as a cotransmitter and that the release of both transmitters is subject to simultaneous feedback inhibition by synaptically released acetylcholine. This has implications for BF neuron function and for the use of cholinesterase inhibitors in Alzheimer's disease
Photodissociation and the Morphology of HI in Galaxies
Young massive stars produce Far-UV photons which dissociate the molecular gas
on the surfaces of their parent molecular clouds. Of the many dissociation
products which result from this ``back-reaction'', atomic hydrogen \HI is one
of the easiest to observe through its radio 21-cm hyperfine line emission. In
this paper I first review the physics of this process and describe a simplified
model which has been developed to permit an approximate computation of the
column density of photodissociated \HI which appears on the surfaces of
molecular clouds. I then review several features of the \HI morphology of
galaxies on a variety of length scales and describe how photodissociation might
account for some of these observations. Finally, I discuss several consequences
which follow if this view of the origin of HI in galaxies continues to be
successful.Comment: 18 pages, 7 figures in 8 files, invited review paper for the
conference "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning
Fork Strikes a New Note", South Africa, June 2004. Proceedings to be
published by Kluwer, eds. D.L. Block, K.C. Freeman, I. Puerari, R. Groess, &
E.K. Bloc
Taylor's law and related allometric power laws in New Zealand mountain beech forests: the roles of space, time and environment
This is the author accepted manuscript. The final version is available from Wiley via https://doi.org/10.1111/oik.02622Taylor's law says that the variance of population density of a species is proportional to a power of mean population density. Density–mass allometry says that mean population density is proportional to a power of mean biomass per individual. These power laws predict a third, variance–mass allometry: the variance of population density of a species is proportional to a power of mean biomass per individual. We tested these laws using 10 censuses of New Zealand mountain beech trees in 250 plots over 30 years at spatial scales from 5 m to kilometers. We found that: 1) a single-species forest not disrupted by humans obeyed all three laws; 2) random sampling explained the parameters of Taylor's law at a large spatial scale in 8 of 10 censuses, but not at a fine spatial scale; 3) larger spatial scale increased the exponent of Taylor's law and decreased the exponent of variance–mass allometry (this is the first empirical demonstration that the latter exponent depends on spatial scale), but affected the exponent of density–mass allometry slightly; 4) despite varying natural disturbance, the three laws varied relatively little over the 30 years; 5) self-thinning and recruiting plots had significantly different intercepts and slopes of density–mass allometry and variance–mass allometry, but the parameters of Taylor's law were not usually significantly affected; and 6) higher soil calcium was associated with higher variance of population density in all censuses but not with a difference in the exponent of Taylor's law, while elevation above sea level and soil carbon-to-nitrogen ratios had little effect on the parameters of Taylor's law. In general, the three laws were remarkably robust. When their parameters were influenced by spatial scale and environmental factors, the parameters could not be species-specific indicators. We suggest biological mechanisms that may explain some of these findings.JEC acknowledges U.S. National Science Foundation grant DMS-1225529 and the assistance of Priscilla K. Rogerson. RBA was supported by Landcare Research. This project benefited from many years of input by staff of the former New Zealand Forest Service, Forest and Range Experiment Station, Forest Research Institute and currently Landcare Research
Liquid crystal films on curved surfaces: An entropic sampling study
The confining effect of a spherical substrate inducing anchoring (normal to
the surface) of rod-like liquid crystal molecules contained in a thin film
spread over it has been investigated with regard to possible changes in the
nature of the isotropic-to-nematic phase transition as the sample is cooled.
The focus of these Monte Carlo simulations is to study the competing effects of
the homeotropic anchoring due to the surface inducing orientational ordering in
the radial direction and the inherent uniaxial order promoted by the
intermolecular interactions. By adopting entropic sampling procedure, we could
investigate this transition with a high temperature precision, and we studied
the effect of the surface anchoring strength on the phase diagram for a
specifically chosen geometry. We find that there is a threshold anchoring
strength of the surface below which uniaxial nematic phase results, and above
which the isotropic fluid cools to a radially ordered nematic phase, besides of
course expected changes in the phase transition temperature with the anchoring
strength. In the vicinity of the threshold anchoring strength we observe a
bistable region between these two structures, clearly brought out by the
characteristics of the corresponding microstates constituting the entropic
ensemble.Comment: 14 pages, 5 figure
Cluster scaling relations from cosmological hydrodynamic simulations in dark energy dominated universe
Clusters are potentially powerful tools for cosmology provided their observed
properties such as the Sunyaev-Zel'dovich (SZ) or X-ray signals can be
translated into physical quantities like mass and temperature. Scaling
relations are the appropriate mean to perform this translation. It is
therefore, important to understand their evolution and their modifications with
respect to the physics and to the underlying cosmology. In this spirit, we
investigate the effect of dark energy on the X-ray and SZ scaling relations.
The study is based on the first hydro-simulations of cluster formation for
diferent models of dark energy. We present results for four dark energy models
which differ from each other by their equations of state parameter, .
Namely, we use a cosmological constant model (as a reference), a perfect
fluid with constant equation of state parameter and one with and a scalar field model (or quintessence) with varying . We generate
N-body/hydrodynamic simulations that include radiative cooling with the public
version of the Hydra code, modified to consider an arbitrary dark energy
component. We produce cluster catalogues for the four models and derive the
associated X-ray and SZ scaling relations. We find that dark energy has little
effect on scaling laws making it safe to use the CDM scalings for
conversion of observed quantities into temperature and masses.Comment: 9 pages, 7 figures, submitted to A&
Tachyon Effective Dynamics and de Sitter Vacua
We show that the DBI action for the singlet sector of the tachyon in
two-dimensional string theory has a SL(2,R) symmetry, a real-time counterpart
of the ground ring. The action can be rewritten as that of point particles
moving in a de Sitter space, whose coordinates are given by the value of the
eigenvalue and time. The symmetry then manifests as the isometry group of de
Sitter space in two dimensions. We use this fact to write the collective field
theory for a large number of branes, which has a natural interpretation as a
fermion field in this de Sitter space. After spending some time building
geometrical insight on facts about the condensation process, the state
corresponding to a sD-brane is identified and standard results in quantum field
theory in curved space-time are used to compute the backreaction of the thermal
background.Comment: 28 pages, 1 eps figure. Uses graphicx, setspace. v2:corrected typos,
added references, clarified discussion on backreactio
Fully coupled simulations of non-colloidal monodisperse sheared suspensions
In this work we investigate numerically the dynamics of sheared suspensions in the limit of vanishingly small fluid and particle inertia. The numerical model we used is able to handle the multi-body hydrodynamic interactions between thousands of particles embedded in a linear shear flow. The presence of the particles is modeled by momentum source terms spread out on a spherical envelop forcing the Stokes equations of the creeping flow. Therefore all the velocity perturbations induced by the moving particles are simultaneously accounted for.
The statistical properties of the sheared suspensions are related to the velocity fluctuation of the particles. We formed averages for the resulting velocity fluctuation and rotation rate tensors. We found that the latter are highly anisotropic and that all the velocity fluctuation terms grow linearly with particle volume fraction. Only one off-diagonal term is found to be non zero (clearly related to trajectory symmetry breaking induced by the non-hydrodynamic repulsion force). We also found a strong correlation of positive/negative velocities in the shear plane, on a time scale controlled by the shear rate (direct interaction of two particles). The time scale required to restore uncorrelated velocity fluctuations decreases continuously as the concentration increases. We calculated the shear induced self-diffusion coefficients using two different methods and the resulting diffusion tensor appears to be anisotropic too.
The microstructure of the suspension is found to be drastically modified by particle interactions. First the probability density function of velocity fluctuations showed a transition from exponential to Gaussian behavior as particle concentration varies. Second the probability of finding close pairs while the particles move under shear flow is strongly enhanced by hydrodynamic interactions when the concentration increases
Towards an Achievable Performance for the Loop Nests
Numerous code optimization techniques, including loop nest optimizations,
have been developed over the last four decades. Loop optimization techniques
transform loop nests to improve the performance of the code on a target
architecture, including exposing parallelism. Finding and evaluating an
optimal, semantic-preserving sequence of transformations is a complex problem.
The sequence is guided using heuristics and/or analytical models and there is
no way of knowing how close it gets to optimal performance or if there is any
headroom for improvement. This paper makes two contributions. First, it uses a
comparative analysis of loop optimizations/transformations across multiple
compilers to determine how much headroom may exist for each compiler. And
second, it presents an approach to characterize the loop nests based on their
hardware performance counter values and a Machine Learning approach that
predicts which compiler will generate the fastest code for a loop nest. The
prediction is made for both auto-vectorized, serial compilation and for
auto-parallelization. The results show that the headroom for state-of-the-art
compilers ranges from 1.10x to 1.42x for the serial code and from 1.30x to
1.71x for the auto-parallelized code. These results are based on the Machine
Learning predictions.Comment: Accepted at the 31st International Workshop on Languages and
Compilers for Parallel Computing (LCPC 2018
Path integral Monte Carlo simulations for rigid rotors and their application to water
In this work the path integral formulation for rigid rotors, proposed by
M\"user and Berne [Phys. Rev. Lett. {\bf 77}, 2638 (1996)], is described in
detail. It is shown how this formulation can be used to perform Monte Carlo
simulations of water. Our numerical results show that whereas some properties
of water can be accurately reproduced using classical simulations with an
empirical potential which, implicitly, includes quantum effects, other
properties can only be described quantitatively when quantum effects are
explicitly incorporated. In particular, quantum effects are extremely relevant
when it comes to describing the equation of state of the ice phases at low
temperatures, the structure of the ices at low temperatures, and the heat
capacity of both liquid water and the ice phases. They also play a minor role
in the relative stability of the ice phases.Comment: to appear in Molecular Physics (2011
- …
