7,032 research outputs found
Inversion of exciton level splitting in quantum dots
The demonstration of degeneracy of exciton spin states is an important step toward the production of entangled photon pairs from the biexciton cascade. We measure the fine structure of exciton and biexciton states for a large number of single InAs quantum dots in a GaAs matrix; the energetic splitting of the horizontally and vertically polarized components of the exciton doublet is shown to decrease as the exciton confinement decreases, crucially passing through zero and changing sign. Thermal annealing is shown to reduce the exciton confinement, thereby increasing the number of dots with splitting close to zero
Controlling the polarisation correlation of photon pairs from a charge-tuneable quantum dot
Correlation between the rectilinear polarisations of the photons emitted from
the biexciton decay in a single quantum dot is investigated in a device which
allows the charge-state of the dot to be controlled. Optimising emission from
the neutral exciton states maximises the operating efficiency of the biexciton
decay. This is important for single dot applications such as a triggered source
of entangled photons. As the bias on the device is reduced correlation between
the two photons is found to fall dramatically as emission from the negatively
charged exciton becomes significant. Lifetime measurements demonstrate that
electronic spin-scattering is the likely cause.Comment: 3 figure
Critical coupling for dynamical chiral-symmetry breaking with an infrared finite gluon propagator
We compute the critical coupling constant for the dynamical chiral-symmetry
breaking in a model of quantum chromodynamics, solving numerically the quark
self-energy using infrared finite gluon propagators found as solutions of the
Schwinger-Dyson equation for the gluon, and one gluon propagator determined in
numerical lattice simulations. The gluon mass scale screens the force
responsible for the chiral breaking, and the transition occurs only for a
larger critical coupling constant than the one obtained with the perturbative
propagator. The critical coupling shows a great sensibility to the gluon mass
scale variation, as well as to the functional form of the gluon propagator.Comment: 19 pages, latex, 3 postscript figures, uses epsf.sty and epsf.tex. To
be published in Phys. Lett.
Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor
The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale
Influence of Rotations on the Critical State of Soil Mechanics
The ability of grains to rotate can play a crucial role on the collective
behavior of granular media. It has been observed in computer simulations that
imposing a torque at the contacts modifies the force chains, making support
chains less important. In this work we investigate the effect of a gradual
hindering of the grains rotations on the so-called critical state of soil
mechanics. The critical state is an asymptotic state independent of the initial
solid fraction where deformations occur at a constant shear strength and
compactness. We quantify the difficulty to rotate by a friction coefficient at
the level of particles, acting like a threshold. We explore the effect of this
particle-level friction coefficient on the critical state by means of molecular
dynamics simulations of a simple shear test on a poly-disperse sphere packing.
We found that the larger the difficulty to rotate, the larger the final shear
strength of the sample. Other micro-mechanical variables, like the structural
anisotropy and the distribution of forces, are also influenced by the
threshold. These results reveal the key role of rotations on the critical
behavior of soils and suggest the inclusion of rotational variables into their
constitutive equations.Comment: 9 pages, 8 figures, Accepted for publication in Computer Physics
Communication
Diffusion-weighted imaging for evaluating inflammatory activity in Crohn's disease: comparison with histopathology, conventional MRI activity scores, and faecal calprotectin
PURPOSE: To evaluate whether the extent of enteric diffusion-weighted imaging (DWI) signal abnormality reflects inflammatory burden in Crohn's disease (CD), and to compare qualitative and quantitative grading. METHODS: 69 CD patients (35 male, age 16-78) undergoing MR enterography with DWI (MRE-D) and the same-day faecal calprotectin (cohort 1) were supplemented by 29 patients (19 male, age 16-70) undergoing MRE-D and terminal ileal biopsy (cohort 2). Global (cohort 1) and terminal ileal (cohort 2) DWI signal was graded (0 to 3) by 2 radiologists and segmental apparent diffusion coefficient (ADC) calculated. Data were compared to calprotectin and a validated MRI activity score [MEGS] (cohort 1), and a histopathological activity score (eAIS) (cohort 2) using nonparametric testing and rank correlation. RESULTS: Patients with normal (grades 0 and 1) DWI signal had lower calprotectin and MEGS than those with abnormal signal (grades 2 and 3) (160 vs. 492 μg/l, p = 0.0004, and 3.3 vs. 21, p 120 μg/l) were 83% and 52%, respectively. There was a negative correlation between ileal MEGS and ADC (r = -0.41, p = 0.017). There was no significant difference in eAIS between qualitative DWI scores (p = 0.42). Mean ADC was not different in those with and without histological inflammation (2077 vs. 1622 × 10(-6)mm(2)/s, p = 0.10) CONCLUSIONS: Qualitative grading of DWI signal has utility in defining the burden of CD activity. Quantitative ADC measurements have poor discriminatory ability for segmental disease activity
Statistical modeling of ground motion relations for seismic hazard analysis
We introduce a new approach for ground motion relations (GMR) in the
probabilistic seismic hazard analysis (PSHA), being influenced by the extreme
value theory of mathematical statistics. Therein, we understand a GMR as a
random function. We derive mathematically the principle of area-equivalence;
wherein two alternative GMRs have an equivalent influence on the hazard if
these GMRs have equivalent area functions. This includes local biases. An
interpretation of the difference between these GMRs (an actual and a modeled
one) as a random component leads to a general overestimation of residual
variance and hazard. Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of the art of stochastics
and statistics (model selection and significance, test of distribution
assumptions, extreme value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima like the peak ground
acceleration (PGA). The natural distribution of its individual random component
(equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized
extreme value. We show by numerical researches that the actual distribution can
be hidden and a wrong distribution assumption can influence the PSHA negatively
as the negligence of area equivalence does. Finally, we suggest an estimation
concept for GMRs of PSHA with a regression-free variance estimation of the
individual random component. We demonstrate the advantages of event-specific
GMRs by analyzing data sets from the PEER strong motion database and estimate
event-specific GMRs. Therein, the majority of the best models base on an
anisotropic point source approach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We validate the estimations
for the event with the largest sample by empirical area functions. etc
Shoulder pain due to cervical radiculopathy: an underestimated long-term complication of herpes zoster virus reactivation?
Purpose
To evaluate if herpes zoster virus (HZV) reactivation may be considered in the aetiology of cervical radiculopathy.
Methods
The study group was composed of 110 patients (52 M-58F;mean age ± SD:46.5 ± 6.12; range:40-73) with a clinical diagnosis of cervical radiculopathy. Patients with signs of chronic damage on neurophysiological studies were submitted to an X-ray and to an MRI of the cervical spine in order to clarify the cause of the cervical radiculopathy and were investigated for a possible reactivation of HZV; HZV reactivation was considered as “recent” or “antique” if it occurs within or after 24 months from the onset of symptoms, respectively. Data were submitted to statistics.
Results
Thirty-eight patients (34,5%,16 M-22F) had a history of HZV reactivation: four (2 M-2F) were “recent” and 34 (14 M-20F) were “antique”. In 68 of 110 participants (61,8%,30 M-38F), pathological signs on X-ray and/or MRI of the cervical spine appeared; in the remaining 42 (38,2%,22 M-20F) X-ray and MRI resulted as negative. Among patients with HZV reactivation, seven (18,4%) had a “positive” X-ray-MRI while in 31 (81,6%) the instrumental exams were considered as negative. The prevalence of “antique” HZV reactivations was statistically greater in the group of patients with no pathological signs on X-ray/MRI of the cervical spine with respect to the group with a pathological instrumental exam (p < 0.01).
Conclusions
It may be useful to investigate the presence of a positive history of HZV reactivation and to consider it as a long-term complication of a cervical root inflammation especially in patients in which X-ray and MRI of the cervical spine did not show pathological findings
- …
