643 research outputs found
Random walk with barriers: Diffusion restricted by permeable membranes
Restrictions to molecular motion by barriers (membranes) are ubiquitous in
biological tissues, porous media and composite materials. A major challenge is
to characterize the microstructure of a material or an organism
nondestructively using a bulk transport measurement. Here we demonstrate how
the long-range structural correlations introduced by permeable membranes give
rise to distinct features of transport. We consider Brownian motion restricted
by randomly placed and oriented permeable membranes and focus on the
disorder-averaged diffusion propagator using a scattering approach. The
renormalization group solution reveals a scaling behavior of the diffusion
coefficient for large times, with a characteristically slow inverse square root
time dependence. The predicted time dependence of the diffusion coefficient
agrees well with Monte Carlo simulations in two dimensions. Our results can be
used to identify permeable membranes as restrictions to transport in disordered
materials and in biological tissues, and to quantify their permeability and
surface area.Comment: 8 pages, 3 figures; origin of dispersion clarified, refs adde
Peri-conception and first trimester diet modifies reproductive development in bulls
Nutritional perturbation during gestation alters male reproductive development in rodents and sheep. In cattle both the developmental trajectory of the feto–placental unit and its response to dietary perturbations is dissimilar to that of these species. This study examined the effects of dietary protein perturbation during the peri-conception and first trimester periods upon reproductive development in bulls. Nulliparous heifers (n = 360) were individually fed a high- or low-protein diet (HPeri and LPeri) from 60 days before conception. From 24 until 98 days post conception, half of each treatment group changed to the alternative post-conception high- or low-protein diet (HPost and LPost) yielding four treatment groups in a 2 × 2 factorial design. A subset of male fetuses (n = 25) was excised at 98 days post conception and fetal testis development was assessed. Reproductive development of singleton male progeny (n = 40) was assessed until slaughter at 598 days of age, when adult testicular cytology was evaluated. Low peri-conception diet delayed reproductive development: sperm quality was lowered during pubertal development with a concomitant delay in reaching puberty. These effects were subsequent to lower FSH concentrations at 330 and 438 days of age. In the fetus, the low peri-conception diet increased the proportion of seminiferous tubules and decreased blood vessel area in the testis, whereas low first trimester diet increased blood vessel number in the adult testis. We conclude that maternal dietary protein perturbation during conception and early gestation may alter male testis development and delay puberty in bulls
A programme theory for liaison mental health services in England
Background:
Mechanisms by which liaison mental health services (LMHS) may bring about improved patient and organisational outcomes are poorly understood. A small number of logic models have been developed, but they fail to capture the complexity of clinical practice.
Method:
We synthesised data from a variety of sources including a large national survey, 73 in-depth interviews with acute and liaison staff working in hospitals with different types of liaison mental health services, and relevant local, national and international literature. We generated logic models for two common performance indicators used to assess organisational outcomes for LMHS: response times in the emergency department and hospital length of stay for people with mental health problems.
Results:
We identified 8 areas of complexity that influence performance, and 6 trade-offs which drove the models in different directions depending upon the balance of the trade-off. The logic models we developed could only be captured by consideration of more than one pass through the system, the complexity in which they operated, and the trade-offs that occurred.
Conclusions:
Our findings are important for commissioners of liaison services. Reliance on simple target setting may result in services that are unbalanced and not patient-centred. Targets need to be reviewed on a regular basis, together with other data that reflect the wider impact of the service, and any external changes in the system that affect the performance of LMHS, which are beyond their control
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.This work was funded in part by the National Institutes of Health (R01 AI50234, AI124678 and AI109023) and a Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Diseases award to D.A.F. This research also received funding from the Portuguese Fundacao para a Ciencia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte); from the Quadro de Referencia Estrategico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). M.I.V. is the recipient of a postdoctoral fellowship from FCT/Ministerio da Ciencia e Ensino Superior, Portugal-MCES (SFRH/BPD/76614/2011). A.M.L. was supported by an Australian National Health and Medical Research Council (NHMRC) Overseas Biomedical Fellowship (585519). R.E.M. was supported by an NHMRC RD Wright Biomedical Fellowship (1053082). A.C.U. was supported by an Irving scholarship from Columbia University. We thank Dr Andrea Ecker for her help with plasmid design and Pedro Ferreira for his expert help with Fig. 6.info:eu-repo/semantics/publishedVersio
Recommended from our members
British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology
The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK
Metabolic alterations during the growth of tumour spheroids
Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms
Metabolic alterations during the growth of tumour spheroids
Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms
The Virtual-Spine Platform—Acquiring, visualizing, and analyzing individual sitting behavior
Back pain is a serious medical problem especially for those people sitting over long periods during their daily work. Here we present a system to help users monitoring and examining their sitting behavior. The Virtual-Spine Platform (VSP) is an integrated system consisting of a real-time body position monitoring module and a data visualization module to provide individualized, immediate, and accurate sitting behavior support. It provides a comprehensive spine movement analysis as well as accumulated data visualization to demonstrate behavior patterns within a certain period. The two modules are discussed in detail focusing on the design of the VSP system with adequate capacity for continuous monitoring and a web-based interactive data analysis method to visualize and compare the sitting behavior of different persons. The data was collected in an experiment with a small group of subjects. Using this method, the behavior of five subjects was evaluated over a working day, enabling inferences and suggestions for sitting improvements. The results from the accumulated data module were used to elucidate the basic function of body position recognition of the VSP. Finally, an expert user study was conducted to evaluate VSP and support future developments
α-Helical Peptides on Plasma-Treated Polymers Promote Ciliation of Airway Epithelial Cells
Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesized that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells. Five candidate plasma compositions are compared; Air, N2, H2, H2:N2 and Air:N2. X-ray photoelectron spectroscopy shows changes in at% N and C 1s peaks after plasma treatment while electron microscopy indicates successful adsorption of hydrogelating self-assembling fibres (hSAF) on all samples. Subsequently, adsorbed hSAFs support human nasal epithelial cell attachment and proliferation and induce differentiation at an air-liquid interface. Transepithelial measurements show that the cells form tight junctions and produce cilia beating at the normal expected frequency of 10-11 Hz after 28 days in culture. The synthetic peptide system described in this study offers potential superiority as an epithelial regeneration substrate over present “gold-standard” materials, such as collagen, as they are controllable and can be chemically functionalised to support a variety of in vivo environments. Using the hSAF peptides described here in combination with plasma-treated polymeric surfaces could offer a way of improving the functionality and integration of implantable polymers for aerodigestive tract reconstruction and regeneration
- …
