2,734 research outputs found
Engineering a costume for performance using illuminated LED-yarns
A goal in the field of wearable technology is to blend electronics with textile fibers to create garments that drape and conform as normal, with additional functionality provided by the embedded electronics. This can be achieved with electronic yarns (E-yarns), in which electronics are integrated within the fibers of a yarn. A challenge is incorporating non-stretch E-yarns with stretch fabric that is desirable for some applications. To address this challenge, E-yarns containing LEDs were embroidered onto the stretch fabric of a unitard used as part of a carnival costume. A zig-zag pattern of attachment of E-yarns was developed. Tensile testing showed this pattern was successful in preventing breakages within the E-yarns. Use in performance demonstrated that a dancer was unimpeded by the presence of the E-yarns within the unitard, but also a weakness in the junctions between E-yarns was observed, requiring further design work and reinforcement. The level of visibility of the chosen red LEDs within black E-yarns was low. The project demonstrated the feasibility of using E-yarns with stretch fabrics. This will be particularly useful in applications where E-yarns containing sensors are required in close contact with skin to provide meaningful on-body readings, without impeding the wearer
High redshift evolution of optically and IR-selected galaxies: a comparison with CDM scenarios
A combination of ground-based (NTT and VLT) and HST (HDF-N and HDF-S) public
imaging surveys have been used to collect a sample of 1712 I-selected and 319
galaxies. Photometric redshifts have been obtained for all these
galaxies. The results have been compared with the prediction of an analytic
rendition of the current CDM hierarchical models for galaxy formation. We focus
in particular on two observed quantities: the galaxy redshift distribution at
K<21 and the evolution of the UV luminosity density. The derived photometric
redshift distribution is in agreement with the hierarchical CDM prediction,
with a fraction of only 5% of galaxies detected at z>2. This result strongly
supports hierarchical scenarios where present-day massive galaxies are the
result of merging processes. The observed UV luminosity density in the
I-selected sample is confined within a factor of 4 over the whole range
0<z<4.5. CDM models in a critical Universe are not able to produce the density
of UV photons that is observed at z>3. CDM models in -dominated
universe are in better agreement at 3<z<4.5, but predict a pronounced peak at
z~1.5 and a drop by a factor of 8 from z=1.5 to z=4 that is not observed in the
data. We conclude that improvements are required in the treatment of the
physical processes directly related to the SFR, e.g. the starbust activity in
merger processes and/or different feedback to the star formation activity.Comment: Figures 2 and 3 modified to match the published versio
High-dimensional decoy-state quantum key distribution over 0.3 km of multicore telecommunication optical fibers
Multiplexing is a strategy to augment the transmission capacity of a
communication system. It consists of combining multiple signals over the same
data channel and it has been very successful in classical communications.
However, the use of enhanced channels has only reached limited practicality in
quantum communications (QC) as it requires the complex manipulation of quantum
systems of higher dimensions. Considerable effort is being made towards QC
using high-dimensional quantum systems encoded into the transverse momentum of
single photons but, so far, no approach has been proven to be fully compatible
with the existing telecommunication infrastructure. Here, we overcome such a
technological challenge and demonstrate a stable and secure high-dimensional
decoy-state quantum key distribution session over a 0.3 km long multicore
optical fiber. The high-dimensional quantum states are defined in terms of the
multiple core modes available for the photon transmission over the fiber, and
the decoy-state analysis demonstrates that our technique enables a positive
secret key generation rate up to 25 km of fiber propagation. Finally, we show
how our results build up towards a high-dimensional quantum network composed of
free-space and fiber based linksComment: Please see the complementary work arXiv:1610.01812 (2016
Children and older adults exhibit distinct sub-optimal cost-benefit functions when preparing to move their eyes and hands
"© 2015 Gonzalez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited"Numerous activities require an individual to respond quickly to the correct stimulus. The provision of advance information allows response priming but heightened responses can cause errors (responding too early or reacting to the wrong stimulus). Thus, a balance is required between the online cognitive mechanisms (inhibitory and anticipatory) used to prepare and execute a motor response at the appropriate time. We investigated the use of advance information in 71 participants across four different age groups: (i) children, (ii) young adults, (iii) middle-aged adults, and (iv) older adults. We implemented 'cued' and 'non-cued' conditions to assess age-related changes in saccadic and touch responses to targets in three movement conditions: (a) Eyes only; (b) Hands only; (c) Eyes and Hand. Children made less saccade errors compared to young adults, but they also exhibited longer response times in cued versus non-cued conditions. In contrast, older adults showed faster responses in cued conditions but exhibited more errors. The results indicate that young adults (18 -25 years) achieve an optimal balance between anticipation and execution. In contrast, children show benefits (few errors) and costs (slow responses) of good inhibition when preparing a motor response based on advance information; whilst older adults show the benefits and costs associated with a prospective response strategy (i.e., good anticipation)
Toward High-Precision Measures of Large-Scale Structure
I review some results of estimation of the power spectrum of density
fluctuations from galaxy redshift surveys and discuss advances that may be
possible with the Sloan Digital Sky Survey. I then examine the realities of
power spectrum estimation in the presence of Galactic extinction, photometric
errors, galaxy evolution, clustering evolution, and uncertainty about the
background cosmology.Comment: 24 pages, including 11 postscript figures. Uses crckapb.sty (included
in submission). To appear in ``Ringberg Workshop on Large-Scale Structure,''
ed D. Hamilton (Kluwer, Amsterdam), p. 39
Post-starburst galaxies: more than just an interesting curiosity
From the VIMOS VLT DEEP Survey (VVDS) we select a sample of 16 galaxies with
spectra which identify them as having recently undergone a strong starburst and
subsequent fast quenching of star formation. These post-starburst galaxies lie
in the redshift range 0.510^9.75Msun. They have a number
density of 1x10^-4 per Mpc^3, almost two orders of magnitude sparser than the
full galaxy population with the same mass limit. We compare with simulations to
show that the galaxies are consistent with being the descendants of gas rich
major mergers. Starburst mass fractions must be larger than ~5-10% and decay
times shorter than ~10^8 years for post-starburst spectral signatures to be
observed in the simulations. We find that the presence of black hole feedback
does not greatly affect the evolution of the simulated merger remnants through
the post-starburst phase. The multiwavelength spectral energy distributions of
the post-starburst galaxies show that 5/16 have completely ceased the formation
of new stars. These 5 galaxies correspond to a mass flux entering the
red-sequence of rhodot(A->Q, PSB) = 0.0038Msun/Mpc^3/yr, assuming the defining
spectroscopic features are detectable for 0.35Gyr. If the galaxies subsequently
remain on the red sequence, this accounts for 38(+4/-11)% of the growth rate of
the red sequence. Finally, we compare our high redshift results with a sample
of galaxies with 0.05<z<0.1 observed in the SDSS and UKIDSS surveys. We find a
very strong redshift evolution: the mass density of strong post-starburst
galaxies is 230 times lower at z~0.07 than at z~0.7.Comment: 18 pages, 12 figures, to match version accepted to MNRAS. Minor
reordering of text in places and Sec 2.2 on SPH simulation comparisons
expande
Early Clinical and Subclinical Visual Evoked Potential and Humphrey's Visual Field Defects in Cryptococcal Meningitis.
Cryptococcal induced visual loss is a devastating complication in survivors of cryptococcal meningitis (CM). Early detection is paramount in prevention and treatment. Subclinical optic nerve dysfunction in CM has not hitherto been investigated by electrophysiological means. We undertook a prospective study on 90 HIV sero-positive patients with culture confirmed CM. Seventy-four patients underwent visual evoked potential (VEP) testing and 47 patients underwent Humphrey's visual field (HVF) testing. Decreased best corrected visual acuity (BCVA) was detected in 46.5% of patients. VEP was abnormal in 51/74 (68.9%) right eyes and 50/74 (67.6%) left eyes. VEP P100 latency was the main abnormality with mean latency values of 118.9 (±16.5) ms and 119.8 (±15.7) ms for the right and left eyes respectively, mildly prolonged when compared to our laboratory references of 104 (±10) ms (p<0.001). Subclinical VEP abnormality was detected in 56.5% of normal eyes and constituted mostly latency abnormality. VEP amplitude was also significantly reduced in this cohort but minimally so in the visually unimpaired. HVF was abnormal in 36/47 (76.6%) right eyes and 32/45 (71.1%) left eyes. The predominant field defect was peripheral constriction with an enlarged blind spot suggesting the greater impact by raised intracranial pressure over that of optic neuritis. Whether this was due to papilloedema or a compartment syndrome is open to further investigation. Subclinical HVF abnormalities were minimal and therefore a poor screening test for early optic nerve dysfunction. However, early optic nerve dysfunction can be detected by testing of VEP P100 latency, which may precede the onset of visual loss in CM
Measuring large-scale structure with quasars in narrow-band filter surveys
We show that a large-area imaging survey using narrow-band filters could
detect quasars in sufficiently high number densities, and with more than
sufficient accuracy in their photometric redshifts, to turn them into suitable
tracers of large-scale structure. If a narrow-band optical survey can detect
objects as faint as i=23, it could reach volumetric number densities as high as
10^{-4} h^3 Mpc^{-3} (comoving) at z~1.5 . Such a catalog would lead to
precision measurements of the power spectrum up to z~3-4. We also show that it
is possible to employ quasars to measure baryon acoustic oscillations at high
redshifts, where the uncertainties from redshift distortions and nonlinearities
are much smaller than at z<1. As a concrete example we study the future impact
of J-PAS, which is a narrow-band imaging survey in the optical over 1/5 of the
unobscured sky with 42 filters of ~100 A full-width at half-maximum. We show
that J-PAS will be able to take advantage of the broad emission lines of
quasars to deliver excellent photometric redshifts, \sigma_{z}~0.002(1+z), for
millions of objects.Comment: Matches version published in MNRAS (2012
Primary skin fibroblasts as a model of Parkinson's disease
Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues
Sri Lankan tsunami refugees: a cross sectional study of the relationships between housing conditions and self-reported health
BACKGROUND: On the 26th December 2004 the Asian tsunami devastated the Sri Lankan coastline. More than two years later, over 14,500 families were still living in transitional shelters. This study compares the health of the internally displaced people (IDP), living in transitional camps with those in permanent housing projects provided by government and non-government organisations in Sri Lanka. METHODS: This study was conducted in seven transitional camps and five permanent housing projects in the south west of Sri Lanka. Using an interviewer-led questionnaire, data on the IDPs' self-reported health and housing conditions were collected from 154 participants from transitional camps and 147 participants from permanent housing projects. Simple tabulation with non-parametric tests and logistic regression were used to identify and analyse relationships between housing conditions and the reported prevalence of specific symptoms. RESULTS: Analysis showed that living conditions were significantly worse in transitional camps than in permanent housing projects for all factors investigated, except 'having a leaking roof'. Transitional camp participants scored significantly lower on self-perceived overall health scores than those living in housing projects. After controlling for gender, age and marital status, living in a transitional camp compared to a housing project was found to be a significant risk factor for the following symptoms; coughs OR: 3.53 (CI: 2.11-5.89), stomach ache 4.82 (2.19-10.82), headache 5.20 (3.09-8.76), general aches and pains 6.44 (3.67-11.33) and feeling generally unwell 2.28 (2.51-7.29). Within transitional camp data, the only condition shown to be a significant risk factor for any symptom was household population density, which increased the risk of stomach aches 1.40 (1.09-1.79) and headaches 1.33 (1.01-1.77). CONCLUSION: Internally displaced people living in transitional camps are a vulnerable population and specific interventions need to be targeted at this population to address the health inequalities that they report to be experiencing. Further studies need to be conducted to establish which aspects of their housing environment predispose them to poorer health
- …
