150 research outputs found

    Structural Parameters of Seven SMC Intermediate-Age and Old Star Clusters

    Full text link
    We present structural parameters for the seven intermediate-age and old star clusters NGC121, Lindsay 1, Kron 3, NGC339, NGC416, Lindsay 38, and NGC419 in the Small Magellanic Cloud. We fit King profiles and Elson, Fall, and Freeman profiles to both surface-brightness and star count data taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Clusters older than 1 Gyr show a spread in cluster core radii that increases with age, while the youngest clusters have relatively compact cores. No evidence for post core collapse clusters was found. We find no correlation between core radius and distance from the SMC center, although consistent with other studies of dwarf galaxies, some relatively old and massive clusters have low densities. The oldest SMC star cluster, the only globular NGC121, is the most elliptical object of the studied clusters. No correlation is seen between ellipticity and distance from the SMC center. The structures of these massive intermediate-age (1-8 Gyr) SMC star clusters thus appear to primarily result from internal evolutionary processes.Comment: 16 pages, 13 figure

    Ca II Triplet Spectroscopy of Small Magellanic Cloud Red Giants. I. Abundances and Velocities for a Sample of Clusters

    Full text link
    We have obtained near-infrared spectra covering the Ca II triplet lines for a number of stars associated with 16 SMC clusters using the VLT + FORS2. These data compose the largest available sample of SMC clusters with spectroscopically derived abundances and velocities. Our clusters span a wide range of ages and provide good areal coverage of the galaxy. Cluster members are selected using a combination of their positions relative to the cluster center as well as their abundances and radial velocities. We determine mean cluster velocities to typically 2.7 km/s and metallicities to 0.05 dex (random errors), from an average of 6.4 members per cluster. (continued in paper)Comment: 68 pages, 15 figures, Accepted to AJ Reason for the replacement: section 7 and fig. 9 have been modified according referee suggestion

    BS196: an old star cluster far from the SMC main body

    Get PDF
    We present B and V photometry of the outlying SMC star cluster BS196 with the 4.1-m SOAR telescope. The photometry is deep (to V~25) showing ~3 mag below the cluster turnoff point (TO) at Mv=2.5 (1.03 Msun). The cluster is located at the SMC distance. The CMD and isochrone fittings provide a cluster age of 5.0+-0.5 Gyr, indicating that this is one of the 12 oldest clusters so far detected in the SMC. The estimated metallicity is [Fe/H]=-1.68+-0.10. The structural analysis gives by means of King profile fittings a core radius Rc=8.7+-1.1 arcsec (2.66+-0.14 pc) and a tidal radius Rt=69.4+-1.7 arcsec (21.2+-1.2 pc). BS196 is rather loose with a concentration parameter c=0.90. With Mv=-1.89+-0.39, BS196 belongs to the class of intrinsically fainter SMC clusters, as compared to the well-known populous ones, which starts to be explored.Comment: 8 pages, 10 figures; accepted by MNRA

    Star Formation History in two fields of the Small Magellanic Cloud Bar

    Get PDF
    The Bar is the most productive region of the Small Magellanic Cloud in terms of star formation but also the least studied one. In this paper we investigate the star formation history of two fields located in the SW and in the NE portion of the Bar using two independent and well tested procedures applied to the color-magnitude diagrams of their stellar populations resolved by means of deep HST photometry. We find that the Bar experienced a negligible star formation activity in the first few Gyr, followed by a dramatic enhancement from 6 to 4 Gyr ago and a nearly constant activity since then. The two examined fields differ both in the rate of star formation and in the ratio of recent over past activity, but share the very low level of initial activity and its sudden increase around 5 Gyr ago. The striking similarity between the timing of the enhancement and the timing of the major episode in the Large Magellanic Cloud is suggestive of a close encounter triggering star formation.Comment: 30 pages, 22 figures, accepted for publication in Ap

    Age Determination of Six Intermediate-age SMC Star Clusters with HST/ACS

    Full text link
    We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC339, NGC416, Lindsay 38, and NGC419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC419 where the Padova isochrones provided the best fit. The CMD of NGC419 shows several main-sequence turn-offs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC419. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally concentrated blue straggler star candidates in NGC416, while for the other clusters these are not present. Using the red clump magnitudes, we find that the closest cluster, NGC419 (~50kpc), and the farthest cluster, Lindsay 38 (~67kpc), have a relative distance of ~17kpc, which confirms the large depth of the SMC.Comment: 25 pages, 45 Figure

    The VMC survey - XV : The Small Magellanic Cloud-Bridge connection history as traced by their star cluster populations

    Get PDF
    Date of Acceptance: 19/03/2015We present results based on YJKs photometry of star clusters located in the outermost, eastern region of the Small Magellanic Cloud (SMC). We analysed a total of 51 catalogued clusters whose colour-magnitude diagrams (CMDs), having been cleaned from field-star contamination, were used to assess the clusters' reality and estimate ages of the genuine systems. Based on CMD analysis, 15 catalogued clusters were found to be possible non-genuine aggregates. We investigated the properties of 80 per cent of the catalogued clusters in this part of the SMC by enlarging our sample with previously obtained cluster ages, adopting a homogeneous scale for all. Their spatial distribution suggests that the oldest clusters, log(t/yr) ≥ 9.6, are in general located at greater distances to the galaxy's centre than their younger counterparts - 9.0 ≤ log(t/yr) ≤ 9.4 - while two excesses of clusters are seen at log(t/yr) ~9.2 and log(t yr-1) ˜ 9.7. We found a trail of younger clusters which follow the wing/bridge components. This long spatial sequence does not only harbour very young clusters, log(t yr-1) ~7.3, but it also hosts some of intermediate ages, log(t/yr) ~9.1. The derived cluster and field-star formation frequencies as a function of age are different. The most surprising feature is an observed excess of clusters with ages of log(t/yr) < 9.0, which could have been induced by interactions with the LMC.Peer reviewedFinal Accepted Versio

    Toward an internally consistent astronomical distance scale

    Full text link
    Accurate astronomical distance determination is crucial for all fields in astrophysics, from Galactic to cosmological scales. Despite, or perhaps because of, significant efforts to determine accurate distances, using a wide range of methods, tracers, and techniques, an internally consistent astronomical distance framework has not yet been established. We review current efforts to homogenize the Local Group's distance framework, with particular emphasis on the potential of RR Lyrae stars as distance indicators, and attempt to extend this in an internally consistent manner to cosmological distances. Calibration based on Type Ia supernovae and distance determinations based on gravitational lensing represent particularly promising approaches. We provide a positive outlook to improvements to the status quo expected from future surveys, missions, and facilities. Astronomical distance determination has clearly reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press (chapter 8 of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Age

    Integrated spectral analysis of 18 concentrated star clusters in the Small Magellanic Cloud

    Get PDF
    We present in this study flux-calibrated integrated spectra in the range 3600-6800A for 18 concentrated SMC clusters. Cluster reddening values were estimated by interpolation between the extinction maps of Burstein & Heiles (1982, AJ, 87, 1165) and Schlegel et al. (1998, ApJ, 500, 525). The cluster parameters were derived from the template matching procedure by comparing the line strengths and continuum distribution of the cluster spectra with those of template cluster spectra with known parameters and from the equivalent width (EW) method. In this case, new calibrations were used together with diagnostic diagrams involving the sum of EWs of selected spectral lines. A very good agreement between ages derived from both methods was found. The final cluster ages obtained from the weighted average of values taken from the literature and the present measured ones range from 15 Mr (e.g. L51) to 7 Gyr (K3). Metal abundances have been derived for only 5 clusters from the present sample, while metallicity values directly averaged from published values for other 4 clusters have been adopted. Combining the present cluster sample with 19 additional SMC clusters whose ages and metal abundances were put onto a homogeneous scale, we analyse the age and metallicity distributions in order to explore the SMC star formation history and its spatial extent. By considering the distances of the clusters from the SMC centre instead of their projections onto the right ascension and declination axes, the present age-position relation suggests that the SMC inner disk could have been related to a cluster formation episode which reached the peak ~2.5 Gyr ago. Evidence for an age gradient in the inner SMC disk is also presented.Comment: 21 pages, 21 figures. Accepted for publication in A&

    Integrated-light VRI imaging photometry of globular clusters in the Magellanic clouds

    Full text link
    We present accurate integrated-light photometry in Johnson/Cousins V, R, and I for a sample of 28 globular clusters in the Magellanic Clouds. The majority of the clusters in our sample have reliable age and metallicity estimates available in the literature. The sample encompasses ages between 50 Myr and 7 Gyr, and metallicities ([Fe/H]) between -1.5 and 0.0 dex. The sample is dominated by clusters of ages between roughly 0.5 and 2 Gyr, an age range during which the bolometric luminosity of simple stellar populations is dominated by evolved red giant branch stars and thermally pulsing asymptotic giant branch (TP-AGB) stars whose theoretical colours are rather uncertain. The VRI colours presented in this paper have been used to calibrate stellar population synthesis model predictions.Comment: 9 pages, 2 figures, accepted for publication in MNRA

    Effect of tube diameter and capillary number on platelet margination and near-wall dynamics

    Get PDF
    The effect of tube diameter DD and capillary number CaCa on platelet margination in blood flow at 37%\approx 37\% tube haematocrit is investigated. The system is modelled as three-dimensional suspension of deformable red blood cells and nearly rigid platelets using a combination of the lattice-Boltzmann, immersed boundary and finite element methods. Results show that margination is facilitated by a non-diffusive radial platelet transport. This effect is important near the edge of the cell-free layer, but it is only observed for Ca>0.2Ca > 0.2, when red blood cells are tank-treading rather than tumbling. It is also shown that platelet trapping in the cell-free layer is reversible for Ca0.2Ca \leq 0.2. Only for the smallest investigated tube (D=10μmD = 10 \mu\text{m}) margination is essentially independent of CaCa. Once platelets have reached the cell-free layer, they tend to slide rather than tumble. The tumbling rate is essentially independent of CaCa but increases with DD. Tumbling is suppressed by the strong confinement due to the relatively small cell-free layer thickness at 37%\approx 37\% tube haematocrit.Comment: 16 pages, 10 figure
    corecore