168 research outputs found
Implementation of a Toffoli Gate with Superconducting Circuits
The quantum Toffoli gate allows universal reversible classical computation.
It is also an important primitive in many quantum circuits and quantum error
correction schemes. Here we demonstrate the realization of a Toffoli gate with
three superconducting transmon qubits coupled to a microwave resonator. By
exploiting the third energy level of the transmon qubit, the number of
elementary gates needed for the implementation of the Toffoli gate, as well as
the total gate time can be reduced significantly in comparison to theoretical
proposals using two-level systems only. We characterize the performance of the
gate by full process tomography and Monte Carlo process certification. The gate
fidelity is found to be %.Comment: 4 pages, 5figure
Parametric study of EEG sensitivity to phase noise during face processing
<b>Background: </b>
The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP) differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1) or textures (two control experiments). All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model.
<b>Results: </b>
Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not sufficient to obtain the sensitivity to phase noise function observed in response to faces.
<b>Conclusion: </b>
Our results constitute the first quantitative assessment of the time course of phase information processing by the human visual brain. We interpret our results in a framework that focuses on image statistics and single-trial analyses
Tratamento anti-inflamatório na depressão: uma revisão sistemática
Introdução: A alta prevalência de depressão na população mundial, associada à elevada morbidade do transtorno, torna necessário o desenvolvimento de tratamentos eficazes. Estudos recentes comprovaram a correlação entre inflamação e desenvolvimento de quadros depressivos. Objetivos: Avaliar o uso de substâncias anti-inflamatórias no manejo de pacientes com depressão uni e bipolar. Metodologia: Este estudo é uma revisão sistemática com análise qualitativa baseada no protocolo Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). A busca foi realizada na Biblioteca Virtual em Saúde e PubMed. Sete estudos foram selecionados. Resultados: O número de estudos que mostraram eficácia do celecoxibe e do infliximabe foi próximo daqueles que não o foram, os biomarcadores séricos foram relacionados à diminuição das escalas de depressão com ambos. Conclusões: Os resultados sobre a eficácia do tratamento anti-inflamatório na depressão ainda são inconclusivos devido à heterogeneidade das pesquisas e ao baixo número de estudos disponíveis.
Synthetic biology to access and expand nature's chemical diversity
Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products
Lithium Treatment of APPSwDI/NOS2−/− Mice Leads to Reduced Hyperphosphorylated Tau, Increased Amyloid Deposition and Altered Inflammatory Phenotype
Lithium is an anti-psychotic that has been shown to prevent the hyperphosphorylation of tau protein through the inhibition of glycogen-synthase kinase 3-beta (GSK3β). We recently developed a mouse model that progresses from amyloid pathology to tau pathology and neurodegeneration due to the genetic deletion of NOS2 in an APP transgenic mouse; the APPSwDI/NOS2−/− mouse. Because this mouse develops tau pathology, amyloid pathology and neuronal loss we were interested in the effect anti-tau therapy would have on amyloid pathology, learning and memory. We administered lithium in the diets of APPSwDI/NOS2−/− mice for a period of eight months, followed by water maze testing at 12 months of age, immediately prior to sacrifice. We found that lithium significantly lowered hyperphosphorylated tau levels as measured by Western blot and immunocytochemistry. However, we found no apparent neuroprotection, no effect on spatial memory deficits and an increase in histological amyloid deposition. Aβ levels measured biochemically were unaltered. We also found that lithium significantly altered the neuroinflammatory phenotype of the brain, resulting in enhanced alternative inflammatory response while concurrently lowering the classical inflammatory response. Our data suggest that lithium may be beneficial for the treatment of tauopathies but may not be beneficial for the treatment of Alzheimer's disease
Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons
The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex
Lower-Level Stimulus Features Strongly Influence Responses in the Fusiform Face Area
An intriguing region of human visual cortex (the fusiform face area; FFA) responds selectively to faces as a general higher-order stimulus category. However, the potential role of lower-order stimulus properties in FFA remains incompletely understood. To clarify those lower-level influences, we measured FFA responses to independent variation in 4 lower-level stimulus dimensions using standardized face stimuli and functional Magnetic Resonance Imaging (fMRI). These dimensions were size, position, contrast, and rotation in depth (viewpoint). We found that FFA responses were strongly influenced by variations in each of these image dimensions; that is, FFA responses were not “invariant” to any of them. Moreover, all FFA response functions were highly correlated with V1 responses (r = 0.95–0.99). As in V1, FFA responses could be accurately modeled as a combination of responses to 1) local contrast plus 2) the cortical magnification factor. In some measurements (e.g., face size or a combinations of multiple cues), the lower-level variations dominated the range of FFA responses. Manipulation of lower-level stimulus parameters could even change the category preference of FFA from “face selective” to “object selective.” Altogether, these results emphasize that a significant portion of the FFA response reflects lower-level visual responses
Magnetic impurity formation in quantum point contacts
A quantum point contact (QPC), a narrow region separating two wider electron
reservoirs, is the standard building block of sub-micron devices, such as
quantum dots - small boxes of electrons, and qubits - the proposed basic
elements of quantum computers. As a function of its width, the conductance
through a QPC changes in integer steps of G0 = , signalling the
quantization of its tranverse modes.1,2 Such measurements also reveal an
additional shoulder at a value around 0.7, an observation which remains a
puzzle even after more than a decade. Recently it has been suggested5,6 that
this phenomenon can be explained if one invokes the existence of a magnetic
impurity in the QPC at low densities. Here we present extensive numerical
density-functional calculations that reveal the formation of a magnetic moment
in the channel as the density increases above pinch-off, under very general
conditions. In addition we show that such an impurity will also form at large
magnetic fields, for a specific value of the field (corresponding to a
degeneracy point between the upper spin state in the first mode and the lower
spin state in the second mode), and sometimes even at the opening of the second
mode in the QPC. Beyond explaining the source of the "0.7 anomaly", these
results may have far reaching implications on spin filling of electronic states
in quantum dots and on dephasing of quantum information stored in semiconductor
qubits.Comment: preprint version of a paper published in Natur
Behavioral genetics and taste
This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste
- …
