635 research outputs found
CMB Anisotropy of the Poincare Dodecahedron
We analyse the anisotropy of the cosmic microwave background (CMB) for the
Poincare dodecahedron which is an example for a multi-connected spherical
universe. We compare the temperature correlation function and the angular power
spectrum for the Poincare dodecahedral universe with the first-year WMAP data
and find that this multi-connected universe can explain the surprisingly low
CMB anisotropy on large scales found by WMAP provided that the total energy
density parameter Omega_tot is in the range 1.016...1.020. The ensemble average
over the primordial perturbations is assumed to be the scale-invariant
Harrison-Zel'dovich spectrum. The circles-in-the-sky signature is studied and
it is found that the signal of the six pairs of matched circles could be missed
by current analyses of CMB sky maps
The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model
The integrated Sachs-Wolfe (ISW) effect is an important implication for dark
energy. In this paper, we have calculated the power spectrum of the ISW effect
in the time varying vacuum cosmological model, where the model parameter
is obtained by the observational constraint of the growth rate.
It's found that the source of the ISW effect is not only affected by the
different evolutions of the Hubble function and the dimensionless matter
density , but also by the different growth function , all
of which are changed due to the presence of matter production term in the time
varying vacuum model. However, the difference of the ISW effect in
model and model is lessened to
a certain extent due to the integration from the time of last scattering to the
present. It's implied that the observations of the galaxies with high redshift
are required to distinguish the two models
Characterizing Width Uniformity by Wave Propagation
This work describes a novel image analysis approach to characterize the
uniformity of objects in agglomerates by using the propagation of normal
wavefronts. The problem of width uniformity is discussed and its importance for
the characterization of composite structures normally found in physics and
biology highlighted. The methodology involves identifying each cluster (i.e.
connected component) of interest, which can correspond to objects or voids, and
estimating the respective medial axes by using a recently proposed wavefront
propagation approach, which is briefly reviewed. The distance values along such
axes are identified and their mean and standard deviation values obtained. As
illustrated with respect to synthetic and real objects (in vitro cultures of
neuronal cells), the combined use of these two features provide a powerful
description of the uniformity of the separation between the objects, presenting
potential for several applications in material sciences and biology.Comment: 14 pages, 23 figures, 1 table, 1 referenc
A Study of the Orbits of the Logarithmic Potential for Galaxies
The logarithmic potential is of great interest and relevance in the study of
the dynamics of galaxies. Some small corrections to the work of Contopoulos &
Seimenis (1990) who used the method of Prendergast (1982) to find periodic
orbits and bifurcations within such a potential are presented. The solution of
the orbital radial equation for the purely radial logarithmic potential is then
considered using the p-ellipse (precessing ellipse) method pioneered by Struck
(2006). This differential orbital equation is a special case of the generalized
Burgers equation. The apsidal angle is also determined, both numerically as
well as analytically by means of the Lambert W and the Polylogarithm functions.
The use of these functions in computing the gravitational lensing produced by
logarithmic potentials is discussed.Comment: 12 pages, 4 figures. Accepted by MNRAS Sept 6 201
Thermodynamic curvature and black holes
I give a relatively broad survey of thermodynamic curvature , one spanning
results in fluids and solids, spin systems, and black hole thermodynamics.
results from the thermodynamic information metric giving thermodynamic
fluctuations. has a unique status in thermodynamics as being a geometric
invariant, the same for any given thermodynamic state. In fluid and solid
systems, the sign of indicates the character of microscopic interactions,
repulsive or attractive. gives the average size of organized mesoscopic
fluctuating structures. The broad generality of thermodynamic principles might
lead one to believe the same for black hole thermodynamics. This paper explores
this issue with a systematic tabulation of results in a number of cases.Comment: 27 pages, 10 figures, 7 tables, 78 references. Talk presented at the
conference Breaking of Supersymmetry and Ultraviolet Divergences in extended
Supergravity, in Frascati, Italy, March 27, 2013. v2 corrects some small
problem
Neutron Stars in Teleparallel Gravity
In this paper we deal with neutron stars, which are described by a perfect
fluid model, in the context of the teleparallel equivalent of general
relativity. We use numerical simulations to find the relationship between the
angular momentum of the field and the angular momentum of the source. Such a
relation was established for each stable star reached by the numerical
simulation once the code is fed with an equation of state, the central energy
density and the ratio between polar and equatorial radii. We also find a regime
where linear relation between gravitational angular momentum and moment of
inertia (as well as angular velocity of the fluid) is valid. We give the
spatial distribution of the gravitational energy and show that it has a linear
dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1206.331
Dark energy, non-minimal couplings and the origin of cosmic magnetic fields
In this work we consider the most general electromagnetic theory in curved
space-time leading to linear second order differential equations, including
non-minimal couplings to the space-time curvature. We assume the presence of a
temporal electromagnetic background whose energy density plays the role of dark
energy, as has been recently suggested. Imposing the consistency of the theory
in the weak-field limit, we show that it reduces to standard electromagnetism
in the presence of an effective electromagnetic current which is generated by
the momentum density of the matter/energy distribution, even for neutral
sources. This implies that in the presence of dark energy, the motion of
large-scale structures generates magnetic fields. Estimates of the present
amplitude of the generated seed fields for typical spiral galaxies could reach
G without any amplification. In the case of compact rotating objects,
the theory predicts their magnetic moments to be related to their angular
momenta in the way suggested by the so called Schuster-Blackett conjecture.Comment: 5 pages, no figure
Classical geometry to quantum behavior correspondence in a Virtual Extra Dimension
In the Lorentz invariant formalism of compact space-time dimensions the
assumption of periodic boundary conditions represents a consistent
semi-classical quantization condition for relativistic fields. In
[arXiv:0903.3680] we have shown, for instance, that the ordinary Feynman path
integral is obtained from the interference between the classical paths with
different winding numbers associated with the cyclic dynamics of the field
solutions. By means of the boundary conditions, the kinematics information of
interactions can be encoded on the relativistic geometrodynamics of the
boundary [arXiv:1110.0315]. Furthermore, such a purely four-dimensional theory
is manifestly dual to an extra-dimensional field theory. The resulting
correspondence between extra-dimensional geometrodynamics and ordinary quantum
behavior can be interpreted in terms of AdS/CFT correspondence. By applying
this approach to a simple Quark-Gluon-Plasma freeze-out model we obtain
fundamental analogies with basic aspects of AdS/QCD phenomenology.Comment: 60 pages. Version published in Annals of Physics (2012). Minor
correction
The in vitro effects of resistin on the innate immune signaling pathway in isolated human subcutaneous adipocytes
Context: Obesity-associated inflammation is a contributory factor in the pathogenesis of type 2 diabetes mellitus (T2DM); the mechanisms underlying the progression to T2DM are unclear. The adipokine resistin has demonstrated pro-inflammatory properties in relation to obesity and T2DM.
Objective: To characterize resistin expression in human obesity and address the role of resistin in the innate immune pathway. Furthermore, examine the influence of lipopolysaccharide, recombinant human resistin (rhResistin), insulin and rosiglitazone in human adipocytes. Finally, analyze the effect of rhResistin on the expression of components of the NF-κB pathway and insulin signaling cascade.
Methods: Abdominal subcutaneous adipose tissue was obtained from patients undergoing elective liposuction surgery (n = 35, aged: 36-49 yr; BMI: 26.5 ± 5.9 kg/m2). Isolated adipocytes were cultured with rhResistin (10-50 ng/ml). The level of cytokine secretion from isolated adipocytes was examined by ELISA. The effect of rhResistin on protein expression of components of the innate immune pathway was examined by Western blot.
Results: In-vitro studies demonstrated that antigenic stimuli increase resistin secretion (P < 0.001) from isolated adipocytes. Pro-inflammatory cytokine levels were increased in response to rhResistin (P < 0.001); this was attenuated by rosiglitazone (P < 0.01). When examining components of the innate immune pathway, rhResistin stimulated Toll-like receptor-2 protein expression. Similarly, mediators of the insulin signaling pathway, phosphospecific JNK1 and JNK2, were upregulated in response to rhResistin.
Conclusion: Resistin may participate in more than one mechanism to influence pro-inflammatory cytokine release from human adipocytes; potentially via the integration of NF-κB and JNK signaling pathways
BIBLIOTECA COMO ELEMENTO BIOGRÁFICO - CASO MACHADO DE ASSIS
Este artigo visa apreender e interpretar a presença da História na biblioteca e na obra de Machado. Com este objetivo, analiso alguns vestígios procurando perceber qual a importância e qual o significado dessa presença da História para a biografia intelectual de Machado
- …
