49 research outputs found
Context-dependent changes in maritime traffic activity during the first year of the COVID-19 pandemic
Rapid implementation of human mobility restrictions during the COVID-19 pandemic dramatically reduced maritime activity in early 2020. But where and when activity rebounded, or remained low, during the full extent of 2020 restrictions remains unclear. Using global high-resolution datasets, we reveal a surprising degree of complexity in maritime activity patterns during 2020, yielding a more nuanced picture of how restrictions affected activity. Overall, shipping activity in Exclusive Economic Zones decreased (1.35 %), as expected, however high-seas activity increased (0.28 %). While these annual changes appear modest, there were striking spatially and temporally asynchronous variations in different vessel types’ activity in the second half of 2020, ranging from an > 80 % sustained reduction in passenger vessel activity to a 150 % increase in fishing activity. Results suggest systems-level responses were highly context-dependent, pinpointing areas that experienced significant reductions and spikes in activity, and providing hitherto missing details of COVID-19 impacts on economic and environmental sustainability
The nature and extent of evidence on methodologies for monitoring and evaluating marine spatial management measures in the UK and similar coastal waters : a systematic map
Background: Anthropogenic degradation of marine ecosystems is widely accepted as a major social-ecological problem. The growing urgency to manage marine ecosystems more effectively has led to increasing application of spatial management measures (marine protected areas [MPAs], sectoral [e.g. fishery] closures and marine spatial planning [marine plans]). Understanding the methodologies used to evaluate the effectiveness of these measures against social, economic, and ecological outcomes is key for designing effective monitoring and evaluation programmes. Methods: We used a pre-defined and tested search string focusing on intervention and outcome terms to search for relevant studies across four bibliographic databases, Google Scholar, 39 organisational websites, and one specialist data repository. Searches were conducted in English and restricted to the period 2009 to 2019 to align with current UK marine policy contexts. Relevant studies were restricted to UK-relevant coastal countries, as identified by key stakeholders. Search results were screened for relevance against pre-defined eligibility criteria first at title and abstract level, and then at full text. Articles assessed as not relevant at full text were recorded with reasons for exclusion. Two systematic map databases of meta-data and coded data from relevant primary and secondary studies, respectively, were produced. Review findings: Over 19,500 search results were identified, resulting in 391 relevant primary articles, 33 secondary articles and 49 tertiary reviews. Relevant primary articles evaluated spatial management measures across a total of 22 social, economic and ecological outcomes; only 2.8% considered all three disciplines, with most focused exclusively on ecological (67.8%) or social (13.3%) evaluations. Secondary articles predominately focused on ecological evaluations (75.8%). The majority of the primary and secondary evidence base aimed to evaluate the effectiveness of MPAs (85.7% and 90.9% respectively), followed by fisheries closures (12.5%; 3.0%) with only 1.8% of primary, and 6.1% of secondary, articles focused on marine plans or on MPAs and fisheries closures combined. Most evaluations reported within primary articles were conducted for a single site (60.4%) or multiple individual sites (32.5%), with few evaluating networks of sites (6.9%). Secondary articles mostly evaluated multiple individual sites (93.9%). Most (70.3%) primary articles conducted principal evaluations, i.e. basic description of effects; 29.4% explored causation; and 0.3% undertook benefit evaluations. Secondary articles predominately explored causation (66.7%) with the remainder conducting principal evaluations. Australia (27.4%), the USA (18.4%) and the UK (11.3%) were most frequently studied by primary articles, with secondary articles reporting mostly global (66.7%) or European (18.2%) syntheses. Conclusions: The systematic map reveals substantial bodies of evidence relating to methods of evaluating MPAs against ecological outcomes. However, key knowledge gaps include evaluation across social and economic outcomes and of overall merit and/or worth (benefit evaluation), as well as of: marine plans; networks of sites; real-time, temporary or seasonal closures; spatial management within offshore waters, and lagoon or estuary environments. Although the evidence base has grown over the past two decades, information to develop comprehensive evaluation frameworks remains insufficient. Greater understanding on how to evaluate the effectiveness of spatial management measures is required to support improved management of global ocean resources and spaces
Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes
Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given
Do protected areas mitigate the effects of fisheries-induced evolution on parental care behaviour of a teleost fish?
Long Time Series Land Cover Classification in China from 1982 to 2015 Based on Bi-LSTM Deep Learning
Explaining Subnational Infant Mortality and Poverty Rates: What Can We Learn from Night-Time Lights?
Recommended from our members
Measuring populations to improve vaccination coverage
In low-income settings, vaccination campaigns supplement routine immunization but often fail to achieve coverage goals due to uncertainty about target population size and distribution. Accurate, updated estimates of target populations are rare but critical; short-term fluctuations can greatly impact population size and susceptibility. We use satellite imagery to quantify population fluctuations and the coverage achieved by a measles outbreak response vaccination campaign in urban Niger and compare campaign estimates to measurements from a post-campaign survey. Vaccine coverage was overestimated because the campaign underestimated resident numbers and seasonal migration further increased the target population. We combine satellite-derived measurements of fluctuations in population distribution with high-resolution measles case reports to develop a dynamic model that illustrates the potential improvement in vaccination campaign coverage if planners account for predictable population fluctuations. Satellite imagery can improve retrospective estimates of vaccination campaign impact and future campaign planning by synchronizing interventions with predictable population fluxes
