140 research outputs found
Recommended from our members
Consistent phenological shifts in the making of a biodiversity hotspot: the Cape flora
Background
The best documented survival responses of organisms to past climate change on short (glacial-interglacial) timescales are distributional shifts. Despite ample evidence on such timescales for local adaptations of populations at specific sites, the long-term impacts of such changes on evolutionary significant units in response to past climatic change have been little documented. Here we use phylogenies to reconstruct changes in distribution and flowering ecology of the Cape flora - South Africa's biodiversity hotspot - through a period of past (Neogene and Quaternary) changes in the seasonality of rainfall over a timescale of several million years.
Results
Forty-three distributional and phenological shifts consistent with past climatic change occur across the flora, and a comparable number of clades underwent adaptive changes in their flowering phenology (9 clades; half of the clades investigated) as underwent distributional shifts (12 clades; two thirds of the clades investigated). Of extant Cape angiosperm species, 14-41% have been contributed by lineages that show distributional shifts consistent with past climate change, yet a similar proportion (14-55%) arose from lineages that shifted flowering phenology.
Conclusions
Adaptive changes in ecology at the scale we uncover in the Cape and consistent with past climatic change have not been documented for other floras. Shifts in climate tolerance appear to have been more important in this flora than is currently appreciated, and lineages that underwent such shifts went on to contribute a high proportion of the flora's extant species diversity. That shifts in phenology, on an evolutionary timescale and on such a scale, have not yet been detected for other floras is likely a result of the method used; shifts in flowering phenology cannot be detected in the fossil record
Site selection for European native oyster (Ostrea edulis) habitat restoration projects: An expert‐derived consensus
The European native oyster (Ostrea edulis) is a threatened keystone species which historically created extensive, physically complex, biogenic habitats throughout European seas. Overfishing and direct habitat destruction, subsequently compounded by pollution, invasive species, disease, predation and climate change have resulted in the functional extinction of native oyster habitat across much of its former range. Although oyster reef habitat remains imperilled, active restoration efforts are rapidly gaining momentum. Identifying appropriate sites for habitat restoration is an essential first step in long-term project success. In this study, a three-round Delphi process was conducted to determine the most important factors to consider in site selection for European native oyster habitat restoration projects. Consensus was reached on a total of 65 factors as being important to consider in site selection for European native oyster habitat restoration projects. In addition to the abiotic factors typically included in habitat suitability models, socio-economic and logistical factors were found to be important. Determining the temporal and spatial variability of threats to native oyster habitat restoration and understanding the biotic factors present at a proposed restoration site also influence the potential for project scale-up and longevity. This list guides site selection by identifying: a shortlist of measurable factors which should be considered; the relevant data to collect; topics for discussion in participatory mapping processes; information of interest from the existing body of local ecological knowledge; and factors underpinning supportive and facilitating regulatory frameworks.</p
Invasive Plants and Enemy Release: Evolution of Trait Means and Trait Correlations in Ulex europaeus
Several hypotheses that attempt to explain invasive processes are based on the fact that plants have been introduced without their natural enemies. Among them, the EICA (Evolution of Increased Competitive Ability) hypothesis is the most influential. It states that, due to enemy release, exotic plants evolve a shift in resource allocation from defence to reproduction or growth. In the native range of the invasive species Ulex europaeus, traits involved in reproduction and growth have been shown to be highly variable and genetically correlated. Thus, in order to explore the joint evolution of life history traits and susceptibility to seed predation in this species, we investigated changes in both trait means and trait correlations. To do so, we compared plants from native and invaded regions grown in a common garden. According to the expectations of the EICA hypothesis, we observed an increase in seedling height. However, there was little change in other trait means. By contrast, correlations exhibited a clear pattern: the correlations between life history traits and infestation rate by seed predators were always weaker in the invaded range than in the native range. In U. europaeus, the role of enemy release in shaping life history traits thus appeared to imply trait correlations rather than trait means. In the invaded regions studied, the correlations involving infestation rates and key life history traits such as flowering phenology, growth and pod density were reduced, enabling more independent evolution of these key traits and potentially facilitating local adaptation to a wide range of environments. These results led us to hypothesise that a relaxation of genetic correlations may be implied in the expansion of invasive species
Modeling the Instantaneous Pressure–Volume Relation of the Left Ventricle: A Comparison of Six Models
Simulations are useful to study the heart’s ability to generate flow and the interaction between contractility and loading conditions. The left ventricular pressure–volume (PV) relation has been shown to be nonlinear, but it is unknown whether a linear model is accurate enough for simulations. Six models were fitted to the PV-data measured in five sheep and the estimated parameters were used to simulate PV-loops. Simulated and measured PV-loops were compared with the Akaike information criterion (AIC) and the Hamming distance, a measure for geometric shape similarity. The compared models were: a time-varying elastance model with fixed volume intercept (LinFix); a time-varying elastance model with varying volume intercept (LinFree); a Langewouter’s pressure-dependent elasticity model (Langew); a sigmoidal model (Sigm); a time-varying elastance model with a systolic flow-dependent resistance (Shroff) and a model with a linear systolic and an exponential diastolic relation (Burkh). Overall, the best model is LinFree (lowest AIC), closely followed by Langew. The remaining models rank: Sigm, Shroff, LinFix and Burkh. If only the shape of the PV-loops is important, all models perform nearly identically (Hamming distance between 20 and 23%). For realistic simulation of the instantaneous PV-relation a linear model suffices
Evaluation of Greenbug and Yellow Sugarcane Aphid Feeding Behavior on Resistant and Susceptible Switchgrass Cultivars
Switchgrass (Panicum virgatum L.) is an emerging biofuel crop that serves as host for aphids. To discern the effects of plant age and possible resistance mechanisms, the feeding behavior of greenbugs (Schizaphis graminum Rondani.) and the yellow sugarcane aphid (Sipha flava Forbes.) was monitored on three diverse switchgrasses by the electrical penetration graph (EPG) technique. Callose deposition and genes associated with callose metabolism were also analyzed to discern their association with plant resistance. There was a strong host effect on greenbugs feeding on lowland cultivar Kanlow at the V3 stage of development, as compared to the greenbug-susceptible upland cultivar Summer and plants derived from Kanlow (♂) × Summer (♀) (K×S) crosses. These data confirmed that Kanlow at the V3 stage had antibiosis to greenbugs, which was absent in the Summer and K×S plants. In contrast, similar effects were not observed for yellow sugarcane aphids, excluding significant differences in the time to first probe on Kanlow plants at the V1 stage and reduction in time spent on pathway processes on Kanlow plants at the V3 stage. These data demonstrated that Kanlow plants may have multiple sources of resistance to the two aphids, and possibly some were phloem based. Microscopy of leaf sections stained with aniline blue for callose was suggestive of increased callose deposition in the sieve elements in Kanlow plants relative to Summer and K×S plants. RT-qPCR analysis of several genes associated with callose metabolism in infested plants was equivocal. Overall, these studies suggest the presence of multiple defense mechanisms against aphids in Kanlow plants, relative to Summer and K×S plants
Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection
Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously
Narrow endemics of the Almeria Province (Andalusia, Spain) differ in their traits and ecological niche compared to their more widespread congeners
- …
