856 research outputs found
A Framework Interpreting Bender Element Tests, Combining Time-Domain and Frequency-Domain Methods
Bender element (BE) testing is a powerful and increasingly common laboratory technique for determining the shear S-wave velocity of geomaterials. There are several advantages of BE testing, but there is no standard developed for the testing procedures or for the interpretation of the results. This leads to high degree of uncertainty and subjectivity in the interpretation. In this paper, the authors review the most common methods for the interpretation of BE tests, discuss some important technical requirements to minimize errors, and propose a practical framework for BE testing, based oil the comparison of different interpretation techniques in order to obtain the most reliable value for the travel time. This new procedure consist,, of the application of a methodical, systematic, and objective approach for the interpretation of the results, in the time and frequency domains. I he use of an automated tool enables unbiased information to be obtained regarding variations in the results to assist in the decision of the travel time. Two natural soils were tested: residual soil from Porto granite, and Toyoura sand. Specimens were subjected to the same isotropic stress conditions and the results obtained provided insights on the effects of soil type and confining stress on the interpretation of BE results; namely, the differences in testing dry versus saturated soils, and in testing uniform versus well-graded soils
Managing variability in decision making in swine growing-finishing units
peer-reviewedAnalysis of data collected from pig farms may be useful to understand factors affecting pig health and productive performance. However, obtaining these data and drawing conclusions from them can be done at different levels and presents several challenges. In the present study, information from 688 batches of growing-finishing (GF) pigs (average initial and final body weight of 19.1 and 108.5 kg respectively) from 404 GF farms integrated in 7 companies was obtained between July 2008 and July 2010 in Spain by survey. Management and facility factors associated with feed conversion ratio (FCR) and mortality were studied by multiple linear regression analysis in each single company (A to G) and in an overall database (OD). Factors studied were geographic location of the farm, trimester the pigs entered the farm, breed of sire and sex segregation in pens (BREGENSEG), use of circovirus vaccine, number of origins the pigs were obtained from, age of the farm, percentage of slatted floor, type of feeder, drinker and ventilation, number of phases and form of feed, antibiotic administration system, water source, and number and initial weight of pigs.
Results
In two or more companies studied and/or in OD, the trimester when pigs were placed in the farm, BREGENSEG, number of origins of the pigs, age of the farm and initial body weight were factors associated with FCR. Regarding mortality, trimester of placement, number of origins of the pigs, water source in the farm, number of pigs placed and the initial body weight were relevant factors. Age of the farm, antibiotic administration system, and water source were only provided by some of the studied companies and were not included in the OD model, however, when analyzed in particular companies these three variables had an important effect and may be variables of interest in companies that do not record them.
Conclusions
Analysing data collected from farms at different levels helps better understand factors associated with productive performance of pig herds. Out of the studied factors trimester of placement and number of origins of the pigs were the most relevant factors associated with FCR and mortality.This research was supported by the Spanish Ministerio de Ciencia e Innovación (project AGL2011-29960). We also thank the Agencia Española de Cooperación Internacional para el Desarrollo (MAEC-AECID) for research fellowship
Structure Preserving Parallel Algorithms for Solving the Bethe-Salpeter Eigenvalue Problem
The Bethe-Salpeter eigenvalue problem is a dense structured eigenvalue
problem arising from discretized Bethe-Salpeter equation in the context of
computing exciton energies and states. A computational challenge is that at
least half of the eigenvalues and the associated eigenvectors are desired in
practice. We establish the equivalence between Bethe-Salpeter eigenvalue
problems and real Hamiltonian eigenvalue problems. Based on theoretical
analysis, structure preserving algorithms for a class of Bethe-Salpeter
eigenvalue problems are proposed. We also show that for this class of problems
all eigenvalues obtained from the Tamm-Dancoff approximation are overestimated.
In order to solve large scale problems of practical interest, we discuss
parallel implementations of our algorithms targeting distributed memory
systems. Several numerical examples are presented to demonstrate the efficiency
and accuracy of our algorithms
Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate
The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union
Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress
Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions
Measurement of the Boson Mass
A measurement of the mass of the boson is presented based on a sample of
5982 decays observed in collisions at
= 1.8~TeV with the D\O\ detector during the 1992--1993 run. From a
fit to the transverse mass spectrum, combined with measurements of the
boson mass, the boson mass is measured to be .Comment: 12 pages, LaTex, style Revtex, including 3 postscript figures
(submitted to PRL
Search for Top Squark Pair Production in the Dielectron Channel
This report describes the first search for top squark pair production in the
channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using
74.9 +- 8.9 pb^-1 of data collected using the D0 detector. A 95% confidence
level upper limit on sigma*B is presented. The limit is above the theoretical
expectation for sigma*B for this process, but does show the sensitivity of the
current D0 data set to a particular topology for new physics.Comment: Five pages, including three figures, submitted to PRD Brief Report
Semisynthetic flavonoid 7-O-galloylquercetin activates Nrf2 and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells
The natural flavonoid quercetin is known to activate the transcription factor Nrf2, which regulates the expression of cytoprotective enzymes such as heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). In this study, a novel semisynthetic flavonoid 7-O-galloylquercetin (or quercetin-7-gallate, 3) was prepared by direct galloylation of quercetin, and its effect on the Nrf2 pathway was examined. A luciferase reporter assay showed that 7-O-galloylquercetin, like quercetin, significantly activated transcription via the antioxidant response element in a stably transfected human AREc32 reporter cell line. In addition, 7-O-galloylquercetin caused the accumulation of Nrf2 and induced the expression of HO-1 at both the mRNA and protein levels in murine macrophage RAW264.7 cells. The induction of HO-1 by 7-O-galloylquercetin was significantly suppressed by N-acetyl-l-cysteine and SB203580, indicating the involvement of reactive oxygen species and p38 mitogen-activated protein kinase activity, respectively. HPLC/MS analyses also showed that 7-O-galloylquercetin was not degalloylated to quercetin, but it was conjugated with glucuronic acid and/or methylated in RAW264.7 cells. Furthermore, 7-O-galloylquercetin was found to increase the protein levels of Nrf2 and HO-1, and also the activity of NQO1 in murine hepatoma Hepa1c1c7 cells. Taken together, we conclude that 7-O-galloylquercetin increases Nrf2 activity and induces Nrf2-dependent gene expression in RAW264.7 and Hepa1c1c7 cells
Search for Production via Trilepton Final States in collisions at TeV
We have searched for associated production of the lightest chargino,
, and next-to-lightest neutralino, , of the
Minimal Supersymmetric Standard Model in collisions at
\mbox{ = 1.8 TeV} using the \D0 detector at the Fermilab Tevatron
collider. Data corresponding to an integrated luminosity of 12.5 \ipb
were examined for events containing three isolated leptons. No evidence for
pair production was found. Limits on
BrBr are
presented.Comment: 17 pages (13 + 1 page table + 3 pages figures). 3 PostScript figures
will follow in a UUEncoded, gzip'd, tar file. Text in LaTex format. Submitted
to Physical Review Letters. Replace comments - Had to resumbmit version with
EPSF directive
Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates
Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency
- …
