38 research outputs found

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as a shield, and would be observed either through their a(s)→γγ decay in the rest of the HCAL detector, or as events with a large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing of the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10^{11} electrons on target, allowing us to set new limits on the a(s)γγ-coupling strength for a(s) masses below 55 MeV

    Space- and time-resolved investigation on diffusion kinetics of human skin following macromolecule delivery by microneedle arrays

    Get PDF
    Microscale medical devices are being developed for targeted skin delivery of vaccines and the extraction of biomarkers, with the potential to revolutionise healthcare in both developing and developed countries. The effective clinical development of these devices is dependent on understanding the macro-molecular diffusion properties of skin. We hypothesised that diffusion varied according to specific skin layers. Using three different molecular weights of rhodamine dextran (RD) (MW of 70, 500 and 2000 kDa) relevant to the vaccine and therapeutic scales, we deposited molecules to a range of depths (0–300 µm) in ex vivo human skin using the Nanopatch device. We observed significant dissipation of RD as diffusion with 70 and 500 kDa within the 30 min timeframe, which varied with MW and skin layer. Using multiphoton microscopy, image analysis and a Fick’s law analysis with 2D cartesian and axisymmetric cylindrical coordinates, we reported experimental trends of epidermal and dermal diffusivity values ranging from 1–8 µm2 s-1 to 1–20 µm2 s-1 respectively, with a significant decrease in the dermal-epidermal junction of 0.7–3 µm2 s-1. In breaching the stratum corneum (SC) and dermal-epidermal junction barriers, we have demonstrated practical application, delivery and targeting of macromolecules to both epidermal and dermal antigen presenting cells, providing a sound knowledge base for future development of skin-targeting clinical technologies in humans

    Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN

    Get PDF
    We report the first results on a direct search for a new 16.7 MeV boson ( X ) which could explain the anomalous excess of e + e − pairs observed in the excited 8 Be ∗ nucleus decays. Because of its coupling to electrons, the X could be produced in the bremsstrahlung reaction e − Z → e − Z X by a 100 GeV e − beam incident on an active target in the NA64 experiment at the CERN Super Proton Synchrotron and observed through the subsequent decay into a e + e − pair. With 5.4 × 10 10 electrons on target, no evidence for such decays was found, allowing us to set first limits on the X − e − coupling in the range 1.3 × 10 − 4 ≲ ε e ≲ 4.2 × 10 − 4 excluding part of the allowed parameter space. We also set new bounds on the mixing strength of photons with dark photons ( A ′ ) from nonobservation of the decay A ′ → e + e − of the bremsstrahlung A ′ with a mass ≲ 23     Me

    Endovascular methods of pulmonary arteries denervation in treatment of patients with pulmonary hypertension (in Russian)

    No full text

    Thalamocortical model for a propofol-induced alpha rhythm associated with loss of consciousness

    No full text
    Recent data reveal that the general anesthetic propofol gives rise to a frontal α-rhythm [alpha rhythm] at dose levels sufficient to induce loss of consciousness. In this work, a computational model is developed that suggests the network mechanisms responsible for such a rhythm. It is shown that propofol can alter the dynamics in thalamocortical loops, leading to persistent and synchronous α-activity [alpha activity]. The synchrony that forms in the cortex by virtue of the involvement of the thalamus may impede responsiveness to external stimuli, thus providing a correlate for the unconscious state.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K25-NS057580)National Institutes of Health (U.S.) (Grant DP2-OD006454)National Science Foundation (U.S.) (Grant DMS-0717670
    corecore