9,413 research outputs found
Vortex Lattice in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} Well Above the First-Order Phase-Transition Boundary
Measurements of non-local in-plane resistance originating from transverse
vortex-vortex correlations have been performed on a
Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} high-T_c superconductor in a magnetic field up
to 9 T applied along the crystal c-axis. Our results demonstrate that a rigid
vortex lattice does exist over a broad portion of the magnetic field --
temperature (H-T) phase diagram, well above the first-order transition boundary
H_{FOT}(T). The results also provide evidence for the vortex lattice melting
and vortex liquid decoupling phase transitions, occurring above the H_{FOT}(T).Comment: 14 pages, 10 figure
I-mode studies at ASDEX Upgrade: L-I and I-H transitions, pedestal and confinement properties
The I-mode is a plasma regime obtained when the usual L-H power threshold is high, e.g.
with unfavourable ion
B
∇
direction. It is characterised by the development of a temperature
pedestal while the density remains roughly as in the L-mode. This leads to a confinement
improvement above the L-mode level which can sometimes reach H-mode values. This
regime, already obtained in the ASDEX Upgrade tokamak about two decades ago, has
been studied again since 2009 taking advantage of the development of new diagnostics
and heating possibilities. The I-mode in ASDEX Upgrade has been achieved with different
heating methods such as NBI, ECRH and ICRF. The I-mode properties, power threshold,
pedestal characteristics and confinement, are independent of the heating method. The power
required at the L-I transition exhibits an offset linear density dependence but, in contrast
to the L-H threshold, depends weakly on the magnetic field. The L-I transition seems to be
mainly determined by the edge pressure gradient and the comparison between ECRH and
NBI induced L-I transitions suggests that the ion channel plays a key role. The I-mode often
evolves gradually over a few confinement times until the transition to H-mode which offers
a very interesting situation to study the transport reduction and its link with the pedestal
formation. Exploratory discharges in which
n
=
2 magnetic perturbations have been applied
indicate that these can lead to an increase of the I-mode power threshold by flattening the edge
pressure at fixed heating input power: more heating power is necessary to restore the required
edge pressure gradient. Finally, the confinement properties of the I-mode are discussed in
detail.European Commission (EUROfusion 633053
Fractional div-curl quantities and applications to nonlocal geometric equations
We investigate a fractional notion of gradient and divergence operator. We
generalize the div-curl estimate by Coifman-Lions-Meyer-Semmes to fractional
div-curl quantities, obtaining, in particular, a nonlocal version of Wente's
lemma.
We demonstrate how these quantities appear naturally in nonlocal geometric
equations, which can be used to obtain a theory for fractional harmonic maps
analogous to the local theory. Firstly, regarding fractional harmonic maps into
spheres, we obtain a conservation law analogous to Shatah's conservation law
and give a new regularity proof analogous to H\'elein's for harmonic maps into
spheres.
Secondly, we prove regularity for solutions to critical systems with nonlocal
antisymmetric potentials on the right-hand side. Since the half-harmonic map
equation into general target manifolds has this form, as a corollary, we obtain
a new proof of the regularity of half-harmonic maps into general target
manifolds following closely Rivi\`{e}re's celebrated argument in the local
case.
Lastly, the fractional div-curl quantities provide also a new, simpler, proof
for H\"older continuity of -harmonic maps into spheres and we extend
this to an argument for -harmonic maps into homogeneous targets.
This is an analogue of Strzelecki's and Toro-Wang's proof for -harmonic maps
into spheres and homogeneous target manifolds, respectively
One More Awareness Gap? The Behaviour–Impact Gap Problem
Preceding research has made hardly any attempt to measure the ecological impacts of pro-environmental behaviour in an objective way. Those impacts were rather supposed or calculated. The research described herein scrutinized the ecological impact reductions achieved through pro-environmental behaviour and raised the question how much of a reduction in carbon footprint can be achieved through voluntary action without actually affecting the socio-economic determinants of life. A survey was carried out in order to measure the difference between the ecological footprint of “green” and “brown” consumers. No significant difference was found between the ecological footprints of the two groups—suggesting that individual pro-environmental attitudes and behaviour do not always reduce the environmental impacts of consumption. This finding resulted in the formulation of a new proposition called the BIG (behaviour–impact gap) problem, which is an interesting addition to research in the field of environmental awareness gaps
Modality, Potentiality and Contradiction in Quantum Mechanics
In [11], Newton da Costa together with the author of this paper argued in
favor of the possibility to consider quantum superpositions in terms of a
paraconsistent approach. We claimed that, even though most interpretations of
quantum mechanics (QM) attempt to escape contradictions, there are many hints
that indicate it could be worth while to engage in a research of this kind.
Recently, Arenhart and Krause [1, 2, 3] have raised several arguments against
this approach and claimed that, taking into account the square of opposition,
quantum superpositions are better understood in terms of contrariety
propositions rather than contradictory propositions. In [17] we defended the
Paraconsistent Approach to Quantum Superpositions (PAQS) and provided arguments
in favor of its development. In the present paper we attempt to analyze the
meanings of modality, potentiality and contradiction in QM, and provide further
arguments of why the PAQS is better suited, than the Contrariety Approach to
Quantum Superpositions (CAQS) proposed by Arenhart and Krause, to face the
interpretational questions that quantum technology is forcing us to consider.Comment: Published in: New Directions in Paraconsistent Logic, J-Y B\'eziau M.
Chakraborty & S. Dutta (Eds.), Springer, in press. arXiv admin note: text
overlap with arXiv:1404.518
Necessary and sufficient conditions of solution uniqueness in minimization
This paper shows that the solutions to various convex minimization
problems are \emph{unique} if and only if a common set of conditions are
satisfied. This result applies broadly to the basis pursuit model, basis
pursuit denoising model, Lasso model, as well as other models that
either minimize or impose the constraint , where
is a strictly convex function. For these models, this paper proves that,
given a solution and defining I=\supp(x^*) and s=\sign(x^*_I),
is the unique solution if and only if has full column rank and there
exists such that and for . This
condition is previously known to be sufficient for the basis pursuit model to
have a unique solution supported on . Indeed, it is also necessary, and
applies to a variety of other models. The paper also discusses ways to
recognize unique solutions and verify the uniqueness conditions numerically.Comment: 6 pages; revised version; submitte
Spin and valley quantum Hall ferromagnetism in graphene
In a graphene Landau level (LL), strong Coulomb interactions and the fourfold
spin/valley degeneracy lead to an approximate SU(4) isospin symmetry. At
partial filling, exchange interactions can spontaneously break this symmetry,
manifesting as additional integer quantum Hall plateaus outside the normal
sequence. Here we report the observation of a large number of these quantum
Hall isospin ferromagnetic (QHIFM) states, which we classify according to their
real spin structure using temperature-dependent tilted field magnetotransport.
The large measured activation gaps confirm the Coulomb origin of the broken
symmetry states, but the order is strongly dependent on LL index. In the high
energy LLs, the Zeeman effect is the dominant aligning field, leading to real
spin ferromagnets with Skyrmionic excitations at half filling, whereas in the
`relativistic' zero energy LL, lattice scale anisotropies drive the system to a
spin unpolarized state, likely a charge- or spin-density wave.Comment: Supplementary information available at http://pico.phys.columbia.ed
Revisiting consistency conditions for quantum states of systems on closed timelike curves: an epistemic perspective
There has been considerable recent interest in the consequences of closed
timelike curves (CTCs) for the dynamics of quantum mechanical systems. A vast
majority of research into this area makes use of the dynamical equations
developed by Deutsch, which were developed from a consistency condition that
assumes that mixed quantum states uniquely describe the physical state of a
system. We criticise this choice of consistency condition from an epistemic
perspective, i.e., a perspective in which the quantum state represents a state
of knowledge about a system. We demonstrate that directly applying Deutsch's
condition when mixed states are treated as representing an observer's knowledge
of a system can conceal time travel paradoxes from the observer, rather than
resolving them. To shed further light on the appropriate dynamics for quantum
systems traversing CTCs, we make use of a toy epistemic theory with a strictly
classical ontology due to Spekkens and show that, in contrast to the results of
Deutsch, many of the traditional paradoxical effects of time travel are
present.Comment: 10 pages, 6 figures, comments welcome; v2 added references and
clarified some points; v3 published versio
Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts
A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts
Truncated and Helix-Constrained Peptides with High Affinity and Specificity for the cFos Coiled-Coil of AP-1
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating i-->i+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, alpha-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable alpha-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun–cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by ~9 kcal/mol, but this was compensated by increased conformational entropy (TDS ≤ 7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by alpha-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases
- …
