4,813 research outputs found
Genome sequences of five African swine fever virus genotype IX isolates from domestic pigs in Uganda
Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX
Genome sequences of five African swine fever virus genotype IX isolates from domestic pigs in Uganda
Complete genome sequences of five African swine fever virus isolates were determined directly from clinical material obtained from domestic pigs in Uganda. Four sequences were essentially identical to each other, and all were closely related to the only known genome sequence of p72 genotype IX
Quarkonium production via recombination
The contrast between model predictions for the transverse momentum spectra of
J/Psi observed in Au-Au collisions at RHIC is extended to include effects of
nuclear absorption. We find that the difference between initial production and
recombination is enhanced in the most central collisions. Models utilizing a
combination of these sources may eventually be able to place constraints on
their relative magnitudes.Comment: Based on invited plenary talk at the 2nd International Conference on
Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Asilomar,
CA, June 9-16, 2006, to be published in Nucl. Phys.
Skyrmions and Bags in the 2D-O(3) model
Localized static solutions of the 2D-O(3) model are investigated in a
representation with the 3-vector field split into the unit vector
and the modulus . As in the nonlinear version of the model
this allows for the definition of a topological winding number , and for the
separation of the complete configuration space into distinct -sectors. For
small values of the -coupling strength the stable energy minima in
these sectors are characterized by bag formation in the modulus field which in
the standard cartesian representation of the linear O(3) model would be
unstable towards decay into the trivial B=0 vacuum. Stabilized by
-conservation they exhibit a surprising variety of very appealing features
for multiply charged systems. With the total charge bound into one common deep
bag opposite ways of distributing the topological charge density inside the bag
can be realized: Pointlike structures which retain the individuality of single
constituents (or doubly charged pairs), or a deconfined charge density spread
uniformly throughout the interior of the bag. It is suggested that this
extension supplies a crucial link to overcome the unsatisfactory existing
mismatch between multiskyrmion configurations and nuclear structure.Comment: 13 pages, 15 figure
Neuroprotection in a Novel Mouse Model of Multiple Sclerosis
The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Role of the mesoamygdaloid dopamine projection in emotional learning
Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 A mu l/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent
Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT
We use AdS/CFT correspondence to study two-particle correlations in heavy ion
collisions at strong coupling. Modeling the colliding heavy ions by shock waves
on the gravity side, we observe that at early times after the collision there
are long-range rapidity correlations present in the two-point functions for the
glueball and the energy-momentum tensor operators. We estimate rapidity
correlations at later times by assuming that the evolution of the system is
governed by ideal Bjorken hydrodynamics, and find that glueball correlations in
this state are suppressed at large rapidity intervals, suggesting that
late-time medium dynamics can not "wash out" the long-range rapidity
correlations that were formed at early times. These results may provide an
insight on the nature of the "ridge" correlations observed in heavy ion
collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde
Quarkonium production in high energy proton-proton and proton-nucleus collisions
We present a brief overview of the most relevant current issues related to
quarkonium production in high energy proton-proton and proton-nucleus
collisions along with some perspectives. After reviewing recent experimental
and theoretical results on quarkonium production in pp and pA collisions, we
discuss the emerging field of polarisation studies. Thereafter, we report on
issues related to heavy-quark production, both in pp and pA collisions,
complemented by AA collisions. To put the work in a broader perspective, we
emphasize the need for new observables to investigate quarkonium production
mechanisms and reiterate the qualities that make quarkonia a unique tool for
many investigations in particle and nuclear physics.Comment: Overview for the proceedings of QUARKONIUM 2010: Three Days Of
Quarkonium Production in pp and pA Collisions, 29-31 July 2010, Palaiseau,
France; 34 pages, 30 figures, Late
Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil
Background:
The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions.
Methodology/Principal findings:
We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action.
Conclusions/Significance:
The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
- …
