3,140 research outputs found
Exploiting Locally Imposed Anisotropies in (Ga,Mn)As: a Non-volatile Memory Device
Progress in (Ga,Mn)As lithography has recently allowed us to realize
structures where unique magnetic anisotropy properties can be imposed locally
in various regions of a given device. We make use of this technology to
fabricate a device in which we study transport through a constriction
separating two regions whose magnetization direction differs by 90 degrees. We
find that the resistance of the constriction depends on the flow of the
magnetic field lines in the constriction region and demonstrate that such a
structure constitutes a non-volatile memory device
Detection of radiation pressure acting on 2009 BD
We report the direct detection of radiation pressure on the asteroid 2009 BD,
one of the smallest multi-opposition near-Earth objects currently known, with H
~ 28.4. Under the purely gravitational model of NEODyS the object is currently
considered a possible future impactor, with impact solutions starting in 2071.
The detection of a radiation-related acceleration allows us to estimate an Area
to Mass Ratio (AMR) for the object, that can be converted (under some
assumptions) into a range of possible values for its average density. Our
result AMR = (2.97 \pm 0.33) x 10^(-4) m^2 kg^(-1) is compatible with the
object being of natural origin, and it is narrow enough to exclude a man-made
nature. The possible origin of this object, its future observability, and the
importance of radiation pressure in the impact monitoring process, are also
discussed.Comment: To be submitted for refereed publication. Preliminary analysis based
on the 2009-2010 data, published on arXiv because of the current
observability window of the targe
The plight of the sense-making ape
This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception
Parameterizing the interstellar dust temperature
The temperature of interstellar dust particles is of great importance to
astronomers. It plays a crucial role in the thermodynamics of interstellar
clouds, because of the gas-dust collisional coupling. It is also a key
parameter in astrochemical studies that governs the rate at which molecules
form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression
for the dust temperature is adopted, because of computational constraints,
while astrochemical modelers tend to keep the dust temperature constant over a
large range of parameter space. Our aim is to provide an easy-to-use parametric
expression for the dust temperature as a function of visual extinction () and to shed light on the critical dependencies of the dust temperature on
the grain composition. We obtain an expression for the dust temperature by
semi-analytically solving the dust thermal balance for different types of
grains and compare to a collection of recent observational measurements. We
also explore the effect of ices on the dust temperature. Our results show that
a mixed carbonaceous-silicate type dust with a high carbon volume fraction
matches the observations best. We find that ice formation allows the dust to be
warmer by up to 15% at high optical depths ( mag) in the
interstellar medium. Our parametric expression for the dust temperature is
presented as , where is in units of the Draine (1978) UV fieldComment: 16 pages, 17 figures, 4 tables. Accepted for publication in A&A.
Version 2: the omission of factor 0.921 in equation 4 is correcte
Predictability of evolutionary trajectories in fitness landscapes
Experimental studies on enzyme evolution show that only a small fraction of
all possible mutation trajectories are accessible to evolution. However, these
experiments deal with individual enzymes and explore a tiny part of the fitness
landscape. We report an exhaustive analysis of fitness landscapes constructed
with an off-lattice model of protein folding where fitness is equated with
robustness to misfolding. This model mimics the essential features of the
interactions between amino acids, is consistent with the key paradigms of
protein folding and reproduces the universal distribution of evolutionary rates
among orthologous proteins. We introduce mean path divergence as a quantitative
measure of the degree to which the starting and ending points determine the
path of evolution in fitness landscapes. Global measures of landscape roughness
are good predictors of path divergence in all studied landscapes: the mean path
divergence is greater in smooth landscapes than in rough ones. The
model-derived and experimental landscapes are significantly smoother than
random landscapes and resemble additive landscapes perturbed with moderate
amounts of noise; thus, these landscapes are substantially robust to mutation.
The model landscapes show a deficit of suboptimal peaks even compared with
noisy additive landscapes with similar overall roughness. We suggest that
smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein
folding.Comment: 14 pages, 7 figure
Robot life: simulation and participation in the study of evolution and social behavior.
This paper explores the case of using robots to simulate evolution, in particular the case of Hamilton's Law. The uses of robots raises several questions that this paper seeks to address. The first concerns the role of the robots in biological research: do they simulate something (life, evolution, sociality) or do they participate in something? The second question concerns the physicality of the robots: what difference does embodiment make to the role of the robot in these experiments. Thirdly, how do life, embodiment and social behavior relate in contemporary biology and why is it possible for robots to illuminate this relation? These questions are provoked by a strange similarity that has not been noted before: between the problem of simulation in philosophy of science, and Deleuze's reading of Plato on the relationship of ideas, copies and simulacra
Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage
20 páginas, 4 figuras, 3 tablas y 7 tablas en material suplementario.Snake venom hemorrhagic metalloproteinases (SVMPs) of the PI, PII and PIII classes were compared in terms of tissue localization and their ability to hydrolyze basement membrane components in vivo, as well as by a proteomics analysis of exudates collected in tissue injected with these enzymes. Immunohistochemical analyses of co-localization of these SVMPs with type IV collagen revealed that PII and PIII enzymes co-localized with type IV collagen in capillaries, arterioles and post-capillary venules to a higher extent than PI SVMP, which showed a more widespread distribution in the tissue. The patterns of hydrolysis by these three SVMPs of laminin, type VI collagen and nidogen in vivo greatly differ, whereas the three enzymes showed a similar pattern of degradation of type IV collagen, supporting the concept that hydrolysis of this component is critical for the destabilization of microvessel structure leading to hemorrhage. Proteomic analysis of wound exudate revealed similarities and differences between the action of the three SVMPs. Higher extent of proteolysis was observed for the PI enzyme regarding several extracellular matrix components and fibrinogen, whereas exudates from mice injected with PII and PIII SVMPs had higher amounts of some intracellular proteins. Our results provide novel clues for understanding the mechanisms by which SVMPs induce damage to the microvasculature and generate hemorrhage.This work was performed in partial fulfillment of the requirements for the PhD degree for Cristina Herrera at Universidad de Costa Rica.Peer reviewe
Bats Use Magnetite to Detect the Earth's Magnetic Field
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a “compass organelle” containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic “Kalmijn-Blakemore” pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals
Distances and ages of globular clusters using Hipparcos parallaxes of local subdwarfs
We discuss the impact of Population II and Globular Cluster (GCs) stars on
the derivation of the age of the Universe, and on the study of the formation
and early evolution of galaxies, our own in particular. The long-standing
problem of the actual distance scale to Population II stars and GCs is
addressed, and a variety of different methods commonly used to derive distances
to Population II stars are briefly reviewed. Emphasis is given to the
discussion of distances and ages for GCs derived using Hipparcos parallaxes of
local subdwarfs. Results obtained by different authors are slightly different,
depending on different assumptions about metallicity scale, reddenings, and
corrections for undetected binaries. These and other uncertainties present in
the method are discussed. Finally, we outline progress expected in the near
future.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles',
A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 22
pages including 3 tables and 2 postscript figures, uses Kluwer's crckapb.sty
LaTeX style file, enclose
The density and peculiar velocity fields of nearby galaxies
We review the quantitative science that can be and has been done with
redshift and peculiar velocity surveys of galaxies in the nearby universe.
After a brief background setting the cosmological context for this work, the
first part of this review focuses on redshift surveys. The practical issues of
how redshift surveys are carried out, and how one turns a distribution of
galaxies into a smoothed density field, are discussed. Then follows a
description of major redshift surveys that have been done, and the local
cosmography out to 8,000 km/s that they have mapped. We then discuss in some
detail the various quantitative cosmological tests that can be carried out with
redshift data. The second half of this review concentrates on peculiar velocity
studies, beginning with a thorough review of existing techniques. After
discussing the various biases which plague peculiar velocity work, we survey
quantitative analyses done with peculiar velocity surveys alone, and finally
with the combination of data from both redshift and peculiar velocity surveys.
The data presented rule out the standard Cold Dark Matter model, although
several variants of Cold Dark Matter with more power on large scales fare
better. All the data are consistent with the hypothesis that the initial
density field had a Gaussian distribution, although one cannot rule out broad
classes of non-Gaussian models. Comparison of the peculiar velocity and density
fields constrains the Cosmological Density Parameter. The results here are
consistent with a flat universe with mild biasing of the galaxies relative to
dark matter, although open universe models are by no means ruled out.Comment: In press, Physics Reports. 153 pages. gzip'ed postscript of text plus
20 embedded figures. Also available via anonymous ftp at
ftp://eku.ias.edu/pub/strauss/review/physrep.p
- …
