53 research outputs found

    Inference of hidden structures in complex physical systems by multi-scale clustering

    Full text link
    We survey the application of a relatively new branch of statistical physics--"community detection"-- to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations.Comment: 25 pages, 16 Figures; a review of earlier work

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    Molecular dynamics of ribosomal elongation factors G and Tu

    Get PDF
    Translation on the ribosome is controlled by external factors. During polypeptide lengthening, elongation factors EF-Tu and EF-G consecutively interact with the bacterial ribosome. EF-Tu binds and delivers an aminoacyl-tRNA to the ribosomal A site and EF-G helps translocate the tRNAs between their binding sites after the peptide bond is formed. These processes occur at the expense of GTP. EF-Tu:tRNA and EF-G are of similar shape, share a common binding site, and undergo large conformational changes on interaction with the ribosome. To characterize the internal motion of these two elongation factors, we used 25 ns long all-atom molecular dynamics simulations. We observed enhanced mobility of EF-G domains III, IV, and V and of tRNA in the EF-Tu:tRNA complex. EF-Tu:GDP complex acquired a configuration different from that found in the crystal structure of EF-Tu with a GTP analogue, showing conformational changes in the switch I and II regions. The calculated electrostatic properties of elongation factors showed no global similarity even though matching electrostatic surface patches were found around the domain I that contacts the ribosome, and in the GDP/GTP binding region

    Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer

    Get PDF
    Breast-conserving surgery followed by radiotherapy is effective in reducing recurrence; however, telangiectasia and fibrosis can occur as late skin side effects. As radiotherapy acts through producing DNA damage, we investigated whether genetic variation in DNA repair and damage response confers increased susceptibility to develop late normal skin complications. Breast cancer patients who received radiotherapy after breast-conserving surgery were examined for late complications of radiotherapy after a median follow-up time of 51 months. Polymorphisms in genes involved in DNA repair (APEX1, XRCC1, XRCC2, XRCC3, XPD) and damage response (TP53, P21) were determined. Associations between telangiectasia and genotypes were assessed among 409 patients, using multivariate logistic regression. A total of 131 patients presented with telangiectasia and 28 patients with fibrosis. Patients with variant TP53 genotypes either for the Arg72Pro or the PIN3 polymorphism were at increased risk of telangiectasia. The odds ratios (OR) were 1.66 (95% confidence interval (CI): 1.02–2.72) for 72Pro carriers and 1.95 (95% CI: 1.13–3.35) for PIN3 A2 allele carriers compared with non-carriers. The TP53 haplotype containing both variant alleles was associated with almost a two-fold increase in risk (OR 1.97, 95% CI: 1.11–3.52) for telangiectasia. Variants in the TP53 gene may therefore modify the risk of late skin toxicity after radiotherapy

    Current concepts in clinical radiation oncology

    Get PDF

    Gut microbiota assessment in Moscow long-livers using next generation sequencing

    No full text
    Demographic aging poses a challenge to the medical community, pressing for research into the biological factors promoting longevity and its features. Below, we look at the gut microbiota as one of such factors. The aim of this non-longitudinal study was to profile the gut microbiota of centenarians and to compare it with that of relatively healthy, younger Moscow residents. The study recruited 20 people aged 97–100 years (mean age 98 ± 1 year); the control group consisted of 92 individuals aged 53 ± 13 years. For each stool sample, the variable V3–V4 regions of the microbial 16S rRNA gene were sequenced. Primary analysis, read filtering and taxonomic identification were conducted in the QIIME 1.9 environment; reconstruction of metabolic pathways was aided by PICRUSt. Statistical analysis was performed by means of Python v. 3.2. A few differences were detected between the gut microbiota of centenarians and younger individuals: Bifidobacterium (p = 0.026) and Coprococcus eutactus (р = 0.026) were more abundant in centenarians, whereas Bacteroides (p = 0.003) and Prevotella (р = 0.002) were better represented in younger participants. The potential for butyric acid synthesis was higher in the group of centenarians (p = 0.048). Surprisingly, the gut microbiota of centenarians was more diverse and surprisingly beneficial for advanced age. Besides, the gut microbiota of centenarians might have more pronounced anti-inflammatory potential due to its ability to better synthesize butyric acid.</jats:p

    Loss of Parkin reduces inflammatory arthritis by inhibiting p53 degradation

    No full text
    Parkin is associated with various inflammatory diseases, including Parkinson's disease (PD) and rheumatoid arthritis (RA). However, the precise role of Parkin in RA is unclear. The present study addressed this issue by comparing the development of RA between non-transgenic (non-Tg) mice and PARK2 knockout (KO) mice. We found that cyclooxygenase-2 and inducible nitric oxide synthase expression and nuclear factor-κB activity were reduced but p53 activation was increased in PARK2 KO as compared to non-Tg mice. These effects were associated with reduced p53 degradation. Parkin was found to interact with p53; however, this was abolished in Parkin KO mice, which prevented p53 degradation. Treatment of PARK2 KO mice with p53 inhibitor increased Parkin expression as well as inflammation and RA development while decreasing nuclear p53 translocation, demonstrating that PARK2 deficiency inhibits inflammation in RA via suppression of p53 degradation. These results suggest that RA development may be reduced in PD patients. Keywords: Parkin, Arthritis, p53, Ubiquitinatio

    CCI-007, a novel small molecule with cytotoxic activity against infant leukemia with MLL rearrangements

    Full text link
    There is an urgent need for the development of less toxic, more selective and targeted therapies for infants with leukemia characterized by translocation of the mixed lineage leukemia (MLL) gene. In this study, we performed a cell-based small molecule library screen on an infant MLL-rearranged (MLL-r) cell line, PER-485, in order to identify selective inhibitors for MLL-r leukemia. After screening initial hits for a cytotoxic effect against a panel of 30 cell lines including MLL-r and MLL wild-type (MLL-wt) leukemia, solid tumours and control cells, small molecule CCI- 007 was identified as a compound that selectively and significantly decreased the viability of a subset of MLL-r and related leukemia cell lines with CALM-AF10 and SET-NUP214 translocation. CCI-007 induced a rapid caspase-dependent apoptosis with mitochondrial depolarization within twenty-four hours of treatment. CCI-007 altered the characteristic MLL-r gene expression signature in sensitive cells with downregulation of the expression of HOXA9, MEIS1, CMYC and BCL2, important drivers in MLL-r leukemia, within a few hours of treatment. MLL-r leukemia cells that were resistant to the compound were characterised by significantly higher baseline gene expression levels of MEIS1 and BCL2 in comparison to CCI-007 sensitive MLL-r leukemia cells. In conclusion, we have identified CCI-007 as a novel small molecule that displays rapid toxicity towards a subset of MLL-r, CALM-AF10 and SET-NUP214 leukemia cell lines. Our findings suggest an important new avenue in the development of targeted therapies for these deadly diseases and indicate that different therapeutic strategies might be needed for different subtypes of MLL-r leukemia
    corecore