418 research outputs found

    Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics

    Full text link
    The fluctuations in the Cosmic Microwave Background (CMB) intensity due to the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic contribution. Separating the two components to measure the peculiar velocity of galaxy clusters requires radio and microwave observations at three or more frequencies, and knowledge of the temperature T_e of the intracluster medium weighted by the electron number density. To quantify the systematics of this procedure, we extract a sample of 117 massive clusters at redshift z=0 from an N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3 and Lambda=0.7. Our simulation includes radiative cooling, star formation and the effect of feedback and galactic winds from supernovae. We find that (1) our simulated clusters reproduce the observed scaling relations between X-ray and SZ properties; (2) bulk flows internal to the intracluster medium affect the velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using the X-ray emission weighted temperature, as an estimate of T_e, can overestimate the peculiar velocity by 20-50 per cent, if the microwave observations do not spatially resolve the cluster. For spatially resolved clusters, the assumptions on the spatial distribution of the ICM, required to separate the two SZ components, still produce a velocity overestimate of 10-20 per cent, even with an unbiased measure of T_e. Thanks to the large size of our cluster samples, these results set a robust lower limit of 200 km/s to the systematic errors that will affect upcoming measures of cluster peculiar velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain more recent observational data. Other minor revisions according to referee's comment

    CMB lensing tomography with the DES Science Verification galaxies

    Get PDF
    We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 2sigma) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z< 1.2 universe is 0.73 ± 0.16 times as large as predicted in the Lambda cold dark matter Planck cosmology, a 1.7sigma deviation

    Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ survey

    Get PDF
    We study the Sunyaev–Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 deg² of the Dark Energy Survey (DES) science verification data, detecting a clear stacked SZE signal down to richness λ ∼ 20. The SZE signature is measured using matched-filtered maps of the 2500 deg2 SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass–observable relations that are either calibrated using SPT-selected clusters or through the Arnaud et al. (A10) X-ray analysis. We measure the SPT signal-to-noise ζ–λ relation and two integrated Compton-yY500–λ relations for the DES-selected clusters and compare these to model expectations that account for the SZE–optical centre offset distribution. For clusters with λ > 80, the two SPT-calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of 0.61 ± 0.12 compared to the prediction. For clusters at 20 < λ < 80, the measured SZE signal is smaller by a factor of ∼0.20–0.80 (between 2.3σ and 10σ significance) compared to the prediction, with the SPT-calibrated scaling relations and larger λ clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness-dependent bias that can be explained by some combination of (1) contamination of the observables and (2) biases in the estimated halo masses. We also discuss particular physical effects associated with these biases, such as contamination of λ from line-of-sight projections or of the SZE observables from point sources, larger offsets in the SZE-optical centring or larger intrinsic scatter in the λ–mass relation at lower richnesses
    corecore