330 research outputs found

    Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes

    Get PDF
    We constructed a whole carbon budget for a catchment in the Western Amazon Basin, combining drainage water analyses with eddy covariance measured terrestrial CO2 fluxes. As fluvial C export can represent permanent C export it must be included in assessments of whole site C balance, but is rarely done. The footprint area of the flux tower is drained by two small streams (~5-7 km2) from which we measured the dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC) export and CO2 efflux. The EC measurements showed the site C balance to be +0.7 ± 9.7 Mg C ha-1 yr-1 (a source to the atmosphere) and fluvial export was 0.3 ± 0.04 Mg C ha-1 yr-1. Of the total fluvial loss 34% was DIC, 37% DOC and 29% POC. The wet season was most important for fluvial C export. There was a large uncertainty associated with the EC results and with previous biomass plot studies (-0.5 ± 4.1 Mg C ha-1 yr-1), hence it cannot be concluded with certainty whether the site is C sink or source. The fluvial export corresponds to only 3-7 % of the uncertainty related to the site C balance, thus other factors need to be considered to reduce the uncertainty and refine the estimated C balance. However, stream C export is significant, especially for almost neutral sites where fluvial loss may determine the direction of the site C balance. The fate of C downstream then dictates the overall climate impact of fluvial export

    Strongly coupled single quantum dot in a photonic crystal waveguide cavity

    Get PDF
    Cavities embedded in photonic crystal waveguides offer a promising route towards large scale integration of coupled resonators for quantum electrodynamics applications. Here a strongly coupled system consisting of a single quantum dot and a cavity formed by the local width modulation of a photonic crystal waveguide is demonstrated. The resonance originating from the cavity is clearly identified from microphotoluminescence mapping of the scattered signal along the waveguide. The exciton-photon strong coupling regime is obtained by temperature control. © 2011 American Institute of Physics

    Perspectives and Integration in SOLAS Science

    Get PDF
    Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency. The exchange of energy, gases and particles across the air-sea interface is controlled by a variety of biological, chemical and physical processes that operate across broad spatial and temporal scales. These processes influence the composition, biogeochemical and chemical properties of both the oceanic and atmospheric boundary layers and ultimately shape the Earth system response to climate and environmental change, as detailed in the previous four chapters. In this cross-cutting chapter we present some of the SOLAS achievements over the last decade in terms of integration, upscaling observational information from process-oriented studies and expeditionary research with key tools such as remote sensing and modelling. Here we do not pretend to encompass the entire legacy of SOLAS efforts but rather offer a selective view of some of the major integrative SOLAS studies that combined available pieces of the immense jigsaw puzzle. These include, for instance, COST efforts to build up global climatologies of SOLAS relevant parameters such as dimethyl sulphide, interconnection between volcanic ash and ecosystem response in the eastern subarctic North Pacific, optimal strategy to derive basin-scale CO2 uptake with good precision, or significant reduction of the uncertainties in sea-salt aerosol source functions. Predicting the future trajectory of Earth’s climate and habitability is the main task ahead. Some possible routes for the SOLAS scientific community to reach this overarching goal conclude the chapter

    Qualified and Unqualified (N-R C) mental health nursing staff - minor differences in sources of stress and burnout. A European multi-centre study

    Get PDF
    BACKGROUND: Unqualified/non-registered caregivers (N-R Cs) will continue to play important roles in the mental health services. This study compares levels of burnout and sources of stress among qualified and N-R Cs working in acute mental health care. METHODS: A total of 196 nursing staff - 124 qualified staff (mainly nurses) and 72 N-R Cs with a variety of different educational backgrounds - working in acute wards or community mental teams from 5 European countries filled out the Maslach Burnout Inventory (MBI), the Mental Health Professional Scale (MHPSS) and the Psychosocial Work Environment and Stress Questionnaire (PWSQ). RESULTS: (a) The univariate differences were generally small and restricted to a few variables. Only Social relations (N-R Cs being less satisfied) at Work demands (nurses reporting higher demands) were different at the .05 level. (b) The absolute scores both groups was highest on variables that measured feelings of not being able to influence a work situation characterised by great demands and insufficient resources. Routines and educational programs for dealing with stress should be available on a routine basis. (c) Multivariate analyses identified three extreme groups: (i) a small group dominated by unqualified staff with high depersonalization, (ii) a large group that was low on depersonalisation and high on work demands with a majority of qualified staff, and (iii) a small N-R C-dominated group (low depersonalization, low work demands) with high scores on professional self-doubt. In contrast to (ii) the small and N-R C-dominated groups in (i) and (iii) reflected mainly centre-dependent problems. CONCLUSION: The differences in burnout and sources of stress between the two groups were generally small. With the exception of high work demands the main differences between the two groups appeared to be centre-dependent. High work demands characterized primarily qualified staff. The main implication of the study is that no special measures addressed towards N-R Cs in general with regard to stress and burnout seem necessary. The results also suggest that centre-specific problems may cause more stress among N-R Cs compared to the qualified staff (e.g. professional self-doubt)

    Quantitative 18F-fluorodeoxyglucose positron emission tomography/computed tomography to assess pulmonary inflammation in COPD

    Get PDF
    RATIONALE: COPD and smoking are characterised by pulmonary inflammation. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) imaging may improve knowledge of pulmonary inflammation in COPD patients and aid early development of novel therapies as an imaging biomarker. OBJECTIVES: To evaluate pulmonary inflammation, assessed by FDG uptake, in whole and regional lung in “usual” (smoking-related) COPD patients, alpha-1 antitrypsin deficiency (α1ATD) COPD patients, smokers without COPD and never-smokers using FDG PET/CT. Secondly, to explore cross-sectional associations between FDG PET/CT and systemic inflammatory markers in COPD patients and repeatability of the technique in COPD patients. METHODS: Data from two imaging studies were evaluated. Pulmonary FDG uptake (normalised Ki; nKi) was measured by Patlak graphical analysis in four subject groups: 84 COPD patients, 11 α1ATD-COPD patients, 12 smokers and 10 never-smokers. Within the COPD group, associations between nKi and systemic markers of inflammation were assessed. Repeatability was evaluated in 32 COPD patients comparing nKi values at baseline and at 4-month follow-up. RESULTS: COPD patients, α1ATD-COPD patients and smokers had increased whole lung FDG uptake (nKi) compared with never-smokers (0.0037±0.001, 0.0040±0.001, 0.0040±0.001 versus 0.0028±0.001 mL·cm−3·min−1, respectively, p<0.05 for all). Similar results were observed in upper and middle lung regions. In COPD participants, plasma fibrinogen was associated with whole lung nKi (β=0.30, p=0.02) in multivariate analysis adjusted for current smoking, forced expiratory volume in 1 s % predicted, systemic neutrophils and C-reactive protein levels. Mean percentage difference in nKi between the baseline and follow-up was 3.2%, and the within subject coefficient of variability was 7.7%. CONCLUSIONS: FDG PET/CT has potential as a noninvasive tool to enable whole lung and regional quantification of FDG uptake to assess smoking- and COPD-related pulmonary inflammation

    Comparing performance of primary care clinicians in the interpretation of SPIROmetry with or without Artificial Intelligence Decision support software (SPIRO-AID): a protocol for a randomised controlled trial.

    Get PDF
    INTRODUCTION: Spirometry is a point-of-care lung function test that helps support the diagnosis and monitoring of chronic lung disease. The quality and interpretation accuracy of spirometry is variable in primary care. This study aims to evaluate whether artificial intelligence (AI) decision support software improves the performance of primary care clinicians in the interpretation of spirometry, against reference standard (expert interpretation). METHODS AND ANALYSIS: A parallel, two-group, statistician-blinded, randomised controlled trial of primary care clinicians in the UK, who refer for, or interpret, spirometry. People with specialist training in respiratory medicine to consultant level were excluded. A minimum target of 228 primary care clinician participants will be randomised with a 1:1 allocation to assess fifty de-identified, real-world patient spirometry sessions through an online platform either with (intervention group) or without (control group) AI decision support software report. Outcomes will cover primary care clinicians' spirometry interpretation performance including measures of technical quality assessment, spirometry pattern recognition and diagnostic prediction, compared with reference standard. Clinicians' self-rated confidence in spirometry interpretation will also be evaluated. The primary outcome is the proportion of the 50 spirometry sessions where the participant's preferred diagnosis matches the reference diagnosis. Unpaired t-tests and analysis of covariance will be used to estimate the difference in primary outcome between intervention and control groups. ETHICS AND DISSEMINATION: This study has been reviewed and given favourable opinion by Health Research Authority Wales (reference: 22/HRA/5023). Results will be submitted for publication in peer-reviewed journals, presented at relevant national and international conferences, disseminated through social media, patient and public routes and directly shared with stakeholders. TRIAL REGISTRATION NUMBER: NCT05933694

    Progressive multifocal leukoencephalopathy in a patient post allo-HCT successfully treated with JC virus specific donor lymphocytes

    Get PDF
    Background: Progressive multifocal leukoencephalopathy is a demyelinating CNS disorder. Reactivation of John Cunningham virus leads to oligodendrocyte infection with lysis and consequent axonal loss due to demyelination. Patients usually present with confusion and seizures. Late diagnosis and lack of adequate therapy options persistently result in permanent impairment of brain functions. Due to profound T cell depletion, impairment of T-cell function and potent immunosuppressive factors, allogeneic hematopoietic cell transplantation recipients are at high risk for JCV reactivation. To date, PML is almost universally fatal when occurring after allo-HCT. Methods: To optimize therapy specificity, we enriched JCV specific T-cells out of the donor T-cell repertoire from the HLA-identical, anti-JCV-antibody positive family stem cell donor by unstimulated peripheral apheresis [1]. For this, we selected T cells responsive to five JCV peptide libraries via the Cytokine Capture System technology. It enables the enrichment of JCV specific T cells via identification of stimulus-induced interferon gamma secretion. Results: Despite low frequencies of responsive T cells, we succeeded in generating a product containing 20 000 JCV reactive T cells ready for patient infusion. The adoptive cell transfer was performed without complication. Consequently, the clinical course stabilized and the patient slowly went into remission of PML with JCV negative CSF and containment of PML lesion expansion. Conclusion: We report for the first time feasibility of generating T cells with possible anti-JCV activity from a seropositive family donor, a variation of virus specific T-cell therapies suitable for the post allo transplant setting. We also present the unusual case for successful treatment of PML after allo-HCT via virus specific T-cell therapy

    The changing carbon cycle of the coastal ocean

    Get PDF
    The carbon cycle of the coastal ocean is a dynamic component of the global carbon budget. But the diverse sources and sinks of carbon and their complex interactions in these waters remain poorly understood. Here we discuss the sources, exchanges and fates of carbon in the coastal ocean and how anthropogenic activities have altered the carbon cycle. Recent evidence suggests that the coastal ocean may have become a net sink for atmospheric carbon dioxide during post-industrial times. Continued human pressures in coastal zones will probably have an important impact on the future evolution of the coastal ocean's carbon budget

    Lighting preferences in individual offices

    Full text link
    Abstract Workplaces with good daylighting offer visual comfort to users, give them a series of physiological and psychological benefits and allow good performance of visual activities, besides saving energy. However, this solution is not always adopted: lighting type preferences involve many variables besides the availability of daylight. This paper explores a case study through the analysis of questionnaire answers and computer simulations of a series of metrics related to quality of lighting with the aim of finding explanations for the lighting preferences of individual office users. The results show that, although the offices present good daylighting conditions and no glare potential, and users are satisfied with daylighting, these parameters are not sufficient to explain the predominant lighting preferences. The findings have also shown that there is no consensus about which parameters potentially cause visual comfort, while the parameters that cause discomfort are clearly identified. In addition, in this study, 49% of the preference for mixed lighting (daylight plus electrical light) can be explained by the fact that mixed lighting produces better modeling than daylighting alone
    corecore