263 research outputs found
Oxygen clamps in gold nanowires
We investigate how the insertion of an oxygen atom in an atomically thin gold
nanowire can affect its rupture. We find, using ab initio total energy density
functional theory calculations, that O atoms when inserted in gold nanowires
form not only stable but also very strong bonds, in such a way that they can
extract atoms from a stable tip, serving in this way as a clamp that could be
used to pull a string of gold atoms.Comment: 4 pages; 4 figure
The role of structural evolution on the quantum conductance behavior of gold nanowires during stretching
Gold nanowires generated by mechanical stretching have been shown to adopt
only three kinds of configurations where their atomic arrangements adjust such
that either the [100], [111] or [110] zone axes lie parallel to the elongation
direction. We have analyzed the relationship between structural rearrangements
and electronic transport behavior during the elongation of Au nanowires for
each of the three possibilities. We have used two independent experiments to
tackle this problem, high resolution transmission high resolution electron
microscopy to observe the atomic structure and a mechanically controlled break
junction to measure the transport properties. We have estimated the conductance
of nanowires using a theoretical method based on the extended H\"uckel theory
that takes into account the atom species and their positions. Aided by these
calculations, we have consistently connected both sets of experimental results
and modeled the evolution process of gold nanowires whose conductance lies
within the first and third conductance quanta. We have also presented evidence
that carbon acts as a contaminant, lowering the conductance of one-atom-thick
wires.Comment: 10 page
Origin of anomalously long interatomic distances in suspended gold chains
The discovery of long bonds in gold atom chains has represented a challenge
for physical interpretation. In fact, interatomic distances frequently attain
3.0-3.6 A values and, distances as large as 5.0 A may be seldom observed. Here,
we studied gold chains by transmission electron microscopy and performed
theoretical calculations using cluster ab initio density functional formalism.
We show that the insertion of two carbon atoms is required to account for the
longest bonds, while distances above 3 A may be due to a mixture of clean and
one C atom contaminated bonds.Comment: 4 pages, 4 Postscript figures, to be published in Physical Review
Letter
Do stellar magnetic cycles influence the measurement of precise radial velocities?
The ever increasing level of precision achieved by present and future
radial-velocity instruments is opening the way to discovering very low-mass,
long-period planets (e.g. solar-system analogs). These systems will be
detectable as low-amplitude signals in radial-velocity (RV). However, an
important obstacle to their detection may be the existence of stellar magnetic
cycles on similar timescales. Here we present the results of a long-term
program to simultaneously measure radial-velocities and stellar-activity
indicators (CaII, H_alpha, HeI) for a sample of stars with known activity
cycles. Our results suggest that all these stellar activity indexes can be used
to trace the stellar magnetic cycle in solar-type stars. Likewise, we find
clear indications that different parameters of the HARPS cross-correlation
function (BIS, FWHM, and contrast) are also sensitive to activity level
variations. Finally, we show that, although in a few cases slight correlations
or anti-correlations between radial-velocity and the activity level of the star
exist, their origin is still not clear. We can, however, conclude that for our
targets (early-K dwarfs) we do not find evidence of any radial-velocity
variations induced by variations of the stellar magnetic cycle with amplitudes
significantly above ~1 m/s.Comment: Accepted for publication in A&A (revised version following minor
language corrections
Ferromagnetic GaMnAs/GaAs superlattices - MBE growth and magnetic properties
We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices
with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML)
(23-45 \AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 \AA).
While previous reports state that GaMnAs layers thinner than 50 \AA are
paramagnetic in the whole Mn composition range achievable using MBE growth (up
to 8% Mn), we have found that short period superlattices exhibit a
paramagnetic-to-ferromagnetic phase transition with a transition temperature
which depends on both the thickness of the magnetic GaMnAs layer and the
nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the
magnetic layers in superlattices are ferromagnetically coupled for both thin
(below 50 \AA) and thick (above 50 \AA) GaMnAs layers.Comment: Proceedings of 4th International Workshop on Molecular Beam Epitaxy
and Vapour Phase Epitaxy Growth Physics and Technology, September 23 - 28
(2001), Warszawa, Poland, to appear in Thin Solid Films. 24 pages, 8 figure
Electronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium model
We investigate the elongation and breaking process of metallic nanowires
using the ultimate jellium model in self-consistent density-functional
calculations of the electron structure. In this model the positive background
charge deforms to follow the electron density and the energy minimization
determines the shape of the system. However, we restrict the shape of the wires
by assuming rotational invariance about the wire axis. First we study the
stability of infinite wires and show that the quantum mechanical
shell-structure stabilizes the uniform cylindrical geometry at given magic
radii. Next, we focus on finite nanowires supported by leads modeled by
freezing the shape of a uniform wire outside the constriction volume. We
calculate the conductance during the elongation process using the adiabatic
approximation and the WKB transmission formula. We also observe the correlated
oscillations of the elongation force. In different stages of the elongation
process two kinds of electronic structures appear: one with extended states
throughout the wire and one with an atom-cluster like unit in the constriction
and with well localized states. We discuss the origin of these structures.Comment: 11 pages, 8 figure
Risk of chronic kidney disease after cancer nephrectomy.
The incidence of early stage renal cell carcinoma (RCC) is increasing and observational studies have shown equivalent oncological outcomes of partial versus radical nephrectomy for stage I tumours. Population studies suggest that compared with radical nephrectomy, partial nephrectomy is associated with decreased mortality and a lower rate of postoperative decline in kidney function. However, rates of chronic kidney disease (CKD) in patients who have undergone nephrectomy might be higher than in the general population. The risks of new-onset or accelerated CKD and worsened survival after nephrectomy might be linked, as kidney insufficiency is a risk factor for cardiovascular disease and mortality. Nephron-sparing approaches have, therefore, been proposed as the standard of care for patients with type 1a tumours and as a viable option for those with type 1b tumours. However, prospective data on the incidence of de novo and accelerated CKD after cancer nephrectomy is lacking, and the only randomized trial to date was closed prematurely. Intrinsic abnormalities in non-neoplastic kidney parenchyma and comorbid conditions (including diabetes mellitus and hypertension) might increase the risks of CKD and RCC. More research is needed to better understand the risk of CKD post-nephrectomy, to develop and validate predictive scores for risk-stratification, and to optimize patient management
The European Hematology Association Roadmap for European Hematology Research: a consensus document
The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at €23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap.
The EHA Roadmap identifies nine ‘sections’ in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders.
The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients
Gold nanowires and the effect of impurities
Metal nanowires and in particular gold nanowires have received a great deal of attention in the past few years. Experiments on gold nanowires have prompted theory and simulation to help answer questions posed by these studies. Here we present results of computer simulations for the formation, evolution and breaking of very thin Au nanowires. We also discuss the influence of contaminants, such as atoms and small molecules, and their effect on the structural and mechanical properties of these nanowires
- …
