62 research outputs found

    Effects of age on strength and morphology of toe flexor muscles

    Get PDF
    Study Design: Cross-sectional. 27 Objective: To compare the strength and size of the toe flexor muscles of older adults relative 28 to their younger counterparts. 29 Background: Age related muscle atrophy is common in lower limb muscles and we therefore 30 speculated that foot muscles also diminish with age. However, there is a paucity of literature 31 characterizing foot muscle strength and morphology, and any relationship between these two, 32 in older people. 33 Methods: Seventeen young adults with a normal foot type were matched by gender and BMI 34 to 17 older adults with a normal foot type, from an available sample of 41 young (18-50 35 years) and 44 older (60+ years) adults. Among the matched groups (n=34), muscle thickness 36 and cross-sectional area (CSA) for five intrinsic and two extrinsic toe flexor muscles were 37 obtained using ultrasound. Toe strength was assessed using a pressure platform. Differences 38 in toe flexor strength and muscle size between the young and older matched groups were 39 determined using ANCOVA (controlling for height). Correlations between strength and size 40 of the toe flexor muscles of the pooled group (n=34) were also calculated. 41 Results: Toe strength and the thickness and CSA of most foot muscles and were significantly 42 reduced in the older adults (P<0.05). Hallux and toe flexor strength were strongly correlated 43 with the size of the intrinsic muscles toe flexor muscles. 44 Conclusion: The smaller foot muscles appear to be affected by sarcopenia in older adults. 45 This could contribute to reduced toe flexion force production and affect the ability of older 46 people to walk safely. Interventions aimed at reversing foot muscle atrophy in older people 47 require further investigation

    Gravitational Energy of Kerr and Kerr Anti-de Sitter Space-times in the Teleparallel Geometry

    Full text link
    In the context of the Hamiltonian formulation of the teleparallel equivalent of general relativity we compute the gravitational energy of Kerr and Kerr Anti-de Sitter (Kerr-AdS) space-times. The present calculation is carried out by means of an expression for the energy of the gravitational field that naturally arises from the integral form of the constraint equations of the formalism. In each case, the energy is exactly computed for finite and arbitrary spacelike two-spheres, without any restriction on the metric parameters. In particular, we evaluate the energy at the outer event horizon of the black holes.Comment: 11 pages, 1 figure, to appear in JHEP11(2003)00

    Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach

    Full text link
    We investigate the distribution of gravitational energy on the spacetime of a Schwarzschild black hole immersed in a cosmic magnetic field. This is done in the context of the {\it Teleparallel Equivalent of General Relativity}, which is an alternative geometrical formulation of General Relativity, where gravity is describe by a spacetime endowed with torsion, rather than curvature, with the fundamental field variables being tetrads. We calculate the energy enclosed by a two-surface of constant radius - in particular, the energy enclosed by the event horizon of the black hole. In this case we find that the magnetic field has the effect of increasing the gravitational energy as compared to the vacuum Schwarzschild case. We also compute the energy (i) in the weak magnetic field limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence of the black hole. In all cases our results are consistent with what should be expected on physical grounds.Comment: version to match the one to be published on General Relativity and Gravitatio

    Movement of the human foot in 100 pain free individuals aged 18–45 : implications for understanding normal foot function

    Get PDF
    Background: Understanding motion in the normal healthy foot is a prerequisite for understanding the effects of pathology and thereafter setting targets for interventions. Quality foot kinematic data from healthy feet will also assist the development of high quality and research based clinical models of foot biomechanics. To address gaps in the current literature we aimed to describe 3D foot kinematics using a 5 segment foot model in a population of 100 pain free individuals. Methods: Kinematics of the leg, calcaneus, midfoot, medial and lateral forefoot and hallux were measured in 100 self reported healthy and pain free individuals during walking. Descriptive statistics were used to characterise foot movements. Contributions from different foot segments to the total motion in each plane were also derived to explore functional roles of different parts of the foot. Results: Foot segments demonstrated greatest motion in the sagittal plane, but large ranges of movement in all planes. All foot segments demonstrated movement throughout gait, though least motion was observed between the midfoot and calcaneus. There was inconsistent evidence of movement coupling between joints. There were clear differences in motion data compared to foot segment models reported in the literature. Conclusions: The data reveal the foot is a multiarticular structure, movements are complex, show incomplete evidence of coupling, and vary person to person. The data provide a useful reference data set against which future experimental data can be compared and may provide the basis for conceptual models of foot function based on data rather than anecdotal observations

    Investigation of first ray mobility during gait by kinematic fluoroscopic imaging-a novel method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is often suggested that sagittal instability at the first tarso-metatarsal joint level is a primary factor for hallux valgus and that sagittal instability increases with the progression of the deformity. The assessment of the degree of vertical instability is usually made by clinical evaluation while any measurements mostly refer to a static assessment of medial ray mobility (i.e. the plantar/dorsal flexion in the sagittal plane). Testing methods currently available cannot attribute the degree of mobility to the corresponding anatomical joints making up the medial column of the foot. The aim of this study was to develop a technique which allows for a quantification of the in-vivo sagittal mobility of the joints of the medial foot column during the roll-over process under full weight bearing.</p> <p>Methods</p> <p>Mobility of first ray bones was investigated by dynamic distortion-free fluoroscopy (25 frames/s) of 14 healthy volunteers and 8 patients with manifested clinical instability of the first ray. A CAD-based evaluation method allowed the determination of mobility and relative displacements and rotations of the first ray bones within the sagittal plane during the stance phase of gait.</p> <p>Results</p> <p>Total flexion of the first ray was found to be 13.63 (SD 6.14) mm with the healthy volunteers and 13.06 (SD 8.01) mm with the patients (resolution: 0.245 mm/pixel). The dorsiflexion angle was 5.27 (SD 2.34) degrees in the healthy volunteers and increased to 5.56 (SD 3.37) degrees in the patients. Maximum rotations were found at the naviculo-cuneiform joints and least at the first tarso-metatarsal joint level in both groups.</p> <p>Conclusions</p> <p>Dynamic fluoroscopic assessment has been shown to be a valuable tool for characterisation of the kinematics of the joints of the medial foot column during gait.</p> <p>A significant difference in first ray flexion and angular rotation between the patients and healthy volunteers however could not be found.</p

    Developing Therapies for C3 Glomerulopathy: Report of the Kidney Health Initiative C3 Glomerulopathy Trial Endpoints Work Group

    Get PDF
    Copyright \ua9 2024 The Author(s). Published by Wolters Kluwer Health, Inc.Randomized clinical trials are underway to evaluate the efficacy of novel agents targeting the alternative complement pathway in patients with C3 glomerulopathy (C3G), a rare glomerular disease. The Kidney Health Initiative convened a panel of experts in C3G to (1) assess the data supporting the use of the prespecified trial end points as measures of clinical benefit and (2) opine on efficacy findings they would consider compelling as treatment(s) of C3G in native kidneys. Two subpanels of the C3G Trial Endpoints Work Group reviewed the available evidence and uncertainties for the association between the three prespecified end points - (1) proteinuria, (2) eGFR, and (3) histopathology - and anticipated outcomes. The full work group provided feedback on the summaries provided by the subpanels and on what potential treatment effects on the proposed end points they would consider compelling to support evidence of an investigational product\u27s effectiveness for treating C3G. Members of the full work group agreed with the characterization of the data, evidence, and uncertainties, supporting the end points. Given the limitations of the available data, the work group was unable to define a minimum threshold for change in any of the end points that might be considered clinically meaningful. The work group concluded that a favorable treatment effect on all three end points would provide convincing evidence of efficacy in the setting of a therapy that targeted the complement pathway. A therapy might be considered effective in the absence of complete alignment in all three end points if there was meaningful lowering of proteinuria and stabilization or improvement in eGFR. The panel unanimously supported efforts to foster data sharing between academic and industry partners to address the gaps in the current knowledge identified by the review of the end points in the aforementioned trials

    Charged Dilaton, Energy, Momentum and Angular-Momentum in Teleparallel Theory Equivalent to General Relativity

    Full text link
    We apply the energy-momentum tensor to calculate energy, momentum and angular-momentum of two different tetrad fields. This tensor is coordinate independent of the gravitational field established in the Hamiltonian structure of the teleparallel equivalent of general relativity (TEGR). The spacetime of these tetrad fields is the charged dilaton. Our results show that the energy associated with one of these tetrad fields is consistent, while the other one does not show this consistency. Therefore, we use the regularized expression of the gravitational energy-momentum tensor of the TEGR. We investigate the energy within the external event horizon using the definition of the gravitational energy-momentum.Comment: 22 Pages Late

    A case-series study to explore the efficacy of foot orthoses in treating first metatarsophalangeal joint pain

    Get PDF
    Background: First metatarsophalangeal (MTP) joint pain is a common foot complaint which is often considered to be a consequence of altered mechanics. Foot orthoses are often prescribed to reduce 1 stMTP joint pain with the aim of altering dorsiflexion at propulsion. This study explores changes in 1 stMTP joint pain and kinematics following the use of foot orthoses.Methods: The effect of modified, pre-fabricated foot orthoses (X-line ®) were evaluated in thirty-two patients with 1 stMTP joint pain of mechanical origin. The primary outcome was pain measured at baseline and 24 weeks using the pain subscale of the foot function index (FFI). In a small sub-group of patients (n = 9), the relationship between pain and kinematic variables was explored with and without their orthoses, using an electromagnetic motion tracking (EMT) system.Results: A significant reduction in pain was observed between baseline (median = 48 mm) and the 24 week endpoint (median = 14.50 mm, z = -4.88, p &lt; 0.001). In the sub-group analysis, we found no relationship between pain reduction and 1 stMTP joint motion, and no significant differences were found between the 1 stMTP joint maximum dorsiflexion or ankle/subtalar complex maximum eversion, with and without the orthoses.Conclusions: This observational study demonstrated a significant decrease in 1 stMTP joint pain associated with the use of foot orthoses. Change in pain was not shown to be associated with 1 stMTP joint dorsiflexion nor with altered ankle/subtalar complex eversion. Further research into the effect of foot orthoses on foot function is indicated. © 2010 Welsh et al; licensee BioMed Central Ltd

    Changes in multi-segment foot biomechanics with a heat-mouldable semi-custom foot orthotic device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Semi-custom foot orthoses (SCO) are thought to be a cost-effective alternative to custom-made devices. However, previous biomechanical research involving either custom or SCO has only focused on rearfoot biomechanics. The purpose of this study was therefore to determine changes in multi-segment foot biomechanics during shod walking with and without an SCO. We chose to investigate an SCO device that incorporates a heat-moulding process, to further understand if the moulding process would significantly alter rearfoot, midfoot, or shank kinematics as compared to a no-orthotic condition. We hypothesized the SCO, whether moulded or non-moulded, would reduce peak rearfoot eversion, tibial internal rotation, arch deformation, and plantar fascia strain as compared to the no-orthoses condition.</p> <p>Methods</p> <p>Twenty participants had retroreflective markers placed on the right limb to represent forefoot, midfoot, rearfoot and shank segments. 3D kinematics were recorded using an 8-camera motion capture system while participants walked on a treadmill.</p> <p>Results</p> <p>Plantar fascia strain was reduced by 34% when participants walked in either the moulded or non-moulded SCO condition compared to no-orthoses. However, there were no significant differences in peak rearfoot eversion, tibial internal rotation, or medial longitudinal arch angles between any conditions.</p> <p>Conclusions</p> <p>A semi-custom moulded orthotic does not control rearfoot, shank, or arch deformation but does, however, reduce plantar fascia strain compared to walking without an orthoses. Heat-moulding the orthotic device does not have a measurable effect on any biomechanical variables compared to the non-moulded condition. These data may, in part, help explain the clinical efficacy of orthotic devices.</p

    Practice activity trends among oral and maxillofacial surgeons in Australia

    Get PDF
    BACKGROUND: The aim of this study was to describe practice activity trends among oral and maxillofacial surgeons in Australia over time. METHODS: All registered oral and maxillofacial surgeons in Australia were surveyed in 1990 and 2000 using mailed self-complete questionnaires. RESULTS: Data were available from 79 surgeons from 1990 (response rate = 73.8%) and 116 surgeons from 2000 (response rate = 65.1%). The rate of provision of services per visit changed over time with increased rates observed overall (from 1.43 ± 0.05 services per visit in 1990 to 1.66 ± 0.06 services per visit in 2000), reflecting increases in pathology and reconstructive surgery. No change over time was observed in the provision of services per year (4,521 ± 286 services per year in 1990 and 4,503 ± 367 services per year in 2000). Time devoted to work showed no significant change over time (1,682 ± 75 hours per year in 1990 and 1,681 ± 94 hours per year in 2000), while the number of visits per week declined (70 ± 4 visits per week in 1990 to 58 ± 4 visits per week in 2000). CONCLUSIONS: The apparent stability in the volume of services provided per year reflected a counterbalancing of increased services provided per visit and a decrease in the number of visits supplied
    corecore