50 research outputs found
Shrinking wings for ultrasonic pitch production: hyperintense ultra-short-wavelength calls in a new genus of neotropical katydids (Orthoptera: tettigoniidae)
This article reports the discovery of a new genus and three species of predaceous katydid (Insecta: Orthoptera) from Colombia and Ecuador in which males produce the highest frequency ultrasonic calling songs so far recorded from an arthropod. Male katydids sing by rubbing their wings together to attract distant females. Their song frequencies usually range from audio (5 kHz) to low ultrasonic (30 kHz). However, males of Supersonus spp. call females at 115 kHz, 125 kHz, and 150 kHz. Exceeding the human hearing range (50 Hz–20 kHz) by an order of magnitude, these insects also emit their ultrasound at unusually elevated sound pressure levels (SPL). In all three species these calls exceed 110 dB SPL rms re 20 µPa (at 15 cm). Males of Supersonus spp. have unusually reduced forewings (<0.5 mm2). Only the right wing radiates appreciable sound, the left bears the file and does not show a particular resonance. In contrast to most katydids, males of Supersonus spp. position and move their wings during sound production so that the concave aspect of the right wing, underlain by the insect dorsum, forms a contained cavity with sharp resonance. The observed high SPL at extreme carrier frequencies can be explained by wing anatomy, a resonant cavity with a membrane, and cuticle deformation
Whole exome re-sequencing implicates CCDC38 and cilia structure and function in resistance to smoking related airflow obstruction
Chronic obstructive pulmonary disease (COPD) is a leading cause of global morbidity and mortality and, whilst smoking remains the single most important risk factor, COPD risk is heritable. Of 26 independent genomic regions showing association with lung function in genome-wide association studies, eleven have been reported to show association with airflow obstruction. Although the main risk factor for COPD is smoking, some individuals are observed to have a high forced expired volume in 1 second (FEV1) despite many years of heavy smoking. We # hypothesised that these ‘‘resistant smokers’’ may harbour variants which protect against lung function decline caused by smoking and provide insight into the genetic determinants of lung health. We undertook whole exome re sequencing of 100 heavy smokers who had healthy lung function given their age, sex, height and smoking history and applied three complementary approaches to explore the genetic architecture of smoking resistance. Firstly, we identified novel functional variants in the ‘‘resistant smokers’’ and looked for enrichment of these novel variants within biological pathways. Secondly, we undertook association testing of all exonic variants individually with two independent control sets. Thirdly, we undertook gene-based association testing of all exonic variants. Our strongest signal of association with smoking resistance for a non-synonymous SNP was for rs10859974 (P = 2.3461024) in CCDC38, a gene which has previously been reported to show association with FEV1/FVC, and we demonstrate moderate expression of CCDC38 in bronchial epithelial cells. We identified an enrichment of novel putatively functional variants in genes related to cilia structure and function in resistant smokers. Ciliary function abnormalities are known to be associated with both smoking and reduced mucociliary clearance in patients with COPD. We suggest that genetic influences on the development or function of cilia in the bronchial epithelium may affect growth of cilia or the extent of damage caused by tobacco smoke
Genome-wide interaction study of gene-by-occupational exposures on respiratory symptoms
© 2018 Elsevier Ltd Respiratory symptoms are important indicators of respiratory diseases. Both genetic and environmental factors contribute to respiratory symptoms development but less is known about gene-environment interactions. We aimed to assess interactions between single nucleotide polymorphisms (SNPs) and occupational exposures on respiratory symptoms cough, dyspnea and phlegm. As identification cohort LifeLines I (n = 7976 subjects) was used. Job-specific exposure was estimated using the ALOHA + job exposure matrix. SNP-by-occupational exposure interactions on respiratory symptoms were tested using logistic regression adjusted for gender, age, and current smoking. SNP-by-exposure interactions with a p-value <10 −4 were tested for replication in two independent cohorts: LifeLines II (n = 5260) and the Vlagtwedde-Vlaardingen cohort (n = 1529). The interaction estimates of the replication cohorts were meta-analyzed using PLINK. Replication was achieved when the meta-analysis p-value was <0.05 and the interaction effect had the same direction as in the identification cohort. Additionally, we assessed whether replicated SNPs associated with gene expression by analyzing if they were cis-acting expression quantitative trait loci (eQTL) in lung tissue. In the replication meta-analysis, sixteen out of 477 identified SNP-by-occupational exposure interactions had a p-value <0.05 and 9 of these interactions had the same direction as in the identification cohort. Several identified loci were plausible candidates for respiratory symptoms, such as TMPRSS9, SERPINH1, TOX3, and ARHGAP18. Three replicated SNPs were cis-eQTLs for FCER1A, CHN1, and TIMM13 in lung tissue. Taken together, this genome-wide SNP-by-occupational exposure interaction study in relation to cough, dyspnea, and phlegm identified several suggestive susceptibility genes. Further research should determine if these genes are true susceptibility loci for respiratory symptoms in relation to occupational exposures
Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study.
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote IPF remain unclear. We aimed to identify genetic variants associated with IPF susceptibility and provide mechanistic insight using gene and protein expression analyses. METHODS: We used a two-stage approach: a genome-wide association study in patients with IPF of European ancestry recruited from nine different centres in the UK and controls selected from UK Biobank (stage 1) matched for age, sex, and smoking status; and a follow-up of associated genetic variants in independent datasets of patients with IPF and controls from two independent US samples from the Chicago consortium and the Colorado consortium (stage 2). We investigated the effect of novel signals on gene expression in large transcriptomic and genomic data resources, and examined expression using lung tissue samples from patients with IPF and controls. FINDINGS: 602 patients with IPF and 3366 controls were selected for stage 1. For stage 2, 2158 patients with IPF and 5195 controls were selected. We identified a novel genome-wide significant signal of association with IPF susceptibility near A-kinase anchoring protein 13 (AKAP13; rs62025270, odds ratio [OR] 1·27 [95% CI 1·18-1·37], p=1·32 × 10(-9)) and confirmed previously reported signals, including in mucin 5B (MUC5B; rs35705950, OR 2·89 [2·56-3·26], p=1·12 × 10(-66)) and desmoplakin (DSP; rs2076295, OR 1·44 [1·35-1·54], p=7·81 × 10(-28)). For rs62025270, the allele A associated with increased susceptibility to IPF was also associated with increased expression of AKAP13 mRNA in lung tissue from patients who had lung resection procedures (n=1111). We showed that AKAP13 is expressed in the alveolar epithelium and lymphoid follicles from patients with IPF, and AKAP13 mRNA expression was 1·42-times higher in lung tissue from patients with IPF (n=46) than that in lung tissue from controls (n=51). INTERPRETATION: AKAP13 is a Rho guanine nucleotide exchange factor regulating activation of RhoA, which is known to be involved in profibrotic signalling pathways. The identification of AKAP13 as a susceptibility gene for IPF increases the prospect of successfully targeting RhoA pathway inhibitors in patients with IPF. FUNDING: UK Medical Research Council, National Heart, Lung, and Blood Institute of the US National Institutes of Health, Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Spain, UK National Institute for Health Research, and the British Lung Foundation
Male Responses to Conspecific Advertisement Signals in the Field Cricket Gryllus rubens (Orthoptera: Gryllidae)
In many species males aggregate and produce long-range advertisement signals to attract conspecific females. The majority of the receivers of these signals are probably other males most of the time, and male responses to competitors' signals can structure the spatial and temporal organization of the breeding aggregation and affect male mating tactics. I quantified male responses to a conspecific advertisement stimulus repeatedly over three age classes in Gryllus rubens (Orthoptera: Gryllidae) in order to estimate the type and frequency of male responses to the broadcast stimulus and to determine the factors affecting them. Factors tested included body size, wing dimorphism, age, and intensity of the broadcast stimulus. Overall, males employed acoustic response more often than positive phonotactic response. As males aged, the frequency of positive phonotactic response decreased but that of the acoustic response increased. That is, males may use positive phonotaxis in the early stages of their adult lives, possibly to find suitable calling sites or parasitize calling males, and then later in life switch to acoustic responses in response to conspecific advertisement signals. Males with smaller body size more frequently exhibited acoustic responses. This study suggests that individual variation, more than any factors measured, is critical for age-dependent male responses to conspecific advertisement signals
Somatic embryogenesis in Acrocomia aculeata Jacq. (Lodd.) ex Mart using the thin cell layer technique
Genetic Associations and Architecture of Asthma-COPD Overlap
BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma
The Signaller's Dilemma: A Cost–Benefit Analysis of Public and Private Communication
Understanding the diversity of animal signals requires knowledge of factors which may influence the different stages of communication, from the production of a signal by the sender up to the detection, identification and final decision-making in the receiver. Yet, many studies on signalling systems focus exclusively on the sender, and often ignore the receiver side and the ecological conditions under which signals evolve.We study a neotropical katydid which uses airborne sound for long distance communication, but also an alternative form of private signalling through substrate vibration. We quantified the strength of predation by bats which eavesdrop on the airborne sound signal, by analysing insect remains at roosts of a bat family. Males do not arbitrarily use one or the other channel for communication, but spend more time with private signalling under full moon conditions, when the nocturnal rainforest favours predation by visually hunting predators. Measurements of metabolic CO(2)-production rate indicate that the energy necessary for signalling increases 3-fold in full moon nights when private signalling is favoured. The background noise level for the airborne sound channel can amount to 70 dB SPL, whereas it is low in the vibration channel in the low frequency range of the vibration signal. The active space of the airborne sound signal varies between 22 and 35 meters, contrasting with about 4 meters with the vibration signal transmitted on the insect's favourite roost plant. Signal perception was studied using neurophysiological methods under outdoor conditions, which is more reliable for the private mode of communication.Our results demonstrate the complex effects of ecological conditions, such as predation, nocturnal ambient light levels, and masking noise levels on the performance of receivers in detecting mating signals, and that the net advantage or disadvantage of a mode of communication strongly depends on these conditions
Seasonal variation and an “outbreak” of frog predation by tamarins
We report temporal variation and an “outbreak” of frog predation by moustached tamarins, Saguinus mystax, in north-eastern Peruvian Amazonia. Frog predation rates were generally very low, but strongly increased in October 2015. Other high rates, identified by outlier analyses, were also observed in September–November of other years. Over all study years, predation rates in this 3-month period were significantly higher than those in the remainder of the year, suggesting a seasonal pattern of frog predation by tamarins. Reduced fruit availability or increased frog abundance or a combination of both may be responsible for both the seasonal pattern and the specific “outbreak” of frog predation
