9,742 research outputs found
Onsager's Inequality, the Landau-Feynman Ansatz and Superfluidity
We revisit an inequality due to Onsager, which states that the (quantum)
liquid structure factor has an upper bound of the form (const.) x |k|, for not
too large modulus of the wave vector k. This inequality implies the validity of
the Landau criterion in the theory of superfluidity with a definite, nonzero
critical velocity. We prove an auxiliary proposition for general Bose systems,
together with which we arrive at a rigorous proof of the inequality for one of
the very few soluble examples of an interacting Bose fluid, Girardeau's model.
The latter proof demonstrates the importance of the thermodynamic limit of the
structure factor, which must be taken initially at k different from 0. It also
substantiates very well the heuristic density functional arguments, which are
also shown to hold exactly in the limit of large wave-lengths. We also briefly
discuss which features of the proof may be present in higher dimensions, as
well as some open problems related to superfluidity of trapped gases.Comment: 28 pages, 2 figure, uses revtex
Parametrizations of density matrices
This article gives a brief overview of some recent progress in the
characterization and parametrization of density matrices of finite dimensional
systems. We discuss in some detail the Bloch-vector and Jarlskog
parametrizations and mention briefly the coset parametrization. As applications
of the Bloch parametrization we discuss the trace invariants for the case of
time dependent Hamiltonians and in some detail the dynamics of three-level
systems. Furthermore, the Bloch vector of two-qubit systems as well as the use
of the polarization operator basis is indicated. As the main application of the
Jarlskog parametrization we construct density matrices for composite systems.
In addition, some recent related articles are mentioned without further
discussion.Comment: 31 pages. v2: 32 pages, Abstract and Introduction rewritten and
Conclusion section added, references adde
Electric Field Effects on Graphene Materials
Understanding the effect of electric fields on the physical and chemical
properties of two-dimensional (2D) nanostructures is instrumental in the design
of novel electronic and optoelectronic devices. Several of those properties are
characterized in terms of the dielectric constant which play an important role
on capacitance, conductivity, screening, dielectric losses and refractive
index. Here we review our recent theoretical studies using density functional
calculations including van der Waals interactions on two types of layered
materials of similar two-dimensional molecular geometry but remarkably
different electronic structures, that is, graphene and molybdenum disulphide
(MoS). We focus on such two-dimensional crystals because of they
complementary physical and chemical properties, and the appealing interest to
incorporate them in the next generation of electronic and optoelectronic
devices. We predict that the effective dielectric constant () of
few-layer graphene and MoS is tunable by external electric fields (). We show that at low fields ( V/\AA)
assumes a nearly constant value 4 for both materials, but increases at
higher fields to values that depend on the layer thickness. The thicker the
structure the stronger is the modulation of with the electric
field. Increasing of the external field perpendicular to the layer surface
above a critical value can drive the systems to an unstable state where the
layers are weakly coupled and can be easily separated. The observed dependence
of on the external field is due to charge polarization driven by
the bias, which show several similar characteristics despite of the layer
considered.Comment: Invited book chapter on Exotic Properties of Carbon Nanomatter:
Advances in Physics and Chemistry, Springer Series on Carbon Materials.
Editors: Mihai V. Putz and Ottorino Ori (11 pages, 4 figures, 30 references
Band structure model of magnetic coupling in semiconductors
We present a unified band structure model to explain magnetic ordering in
Mn-doped semiconductors. This model is based on the - and - level
repulsions between the Mn ions and host elements and can successfully explain
magnetic ordering observed in all Mn doped II-VI and III-V semiconductors such
as CdTe, GaAs, ZnO, and GaN. This model, therefore, provides a simple guideline
for future band structure engineering of magnetic semiconductors.Comment: 4+ pages, 5 figure
Spectral properties on a circle with a singularity
We investigate the spectral and symmetry properties of a quantum particle
moving on a circle with a pointlike singularity (or point interaction). We find
that, within the U(2) family of the quantum mechanically allowed distinct
singularities, a U(1) equivalence (of duality-type) exists, and accordingly the
space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus.
We explore the relationship of special subfamilies of the U(2) family to
corresponding symmetries, and identify the singularities that admit an N = 2
supersymmetry. Subfamilies that are distinguished in the spectral properties or
the WKB exactness are also pointed out. The spectral and symmetry properties
are also studied in the context of the circle with two singularities, which
provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update
Contribuição adicional das imagens por tensores de difusão em paralisia do olhar conjugado horizontal associada a escoliose progressiva
In two siblings with clinical diagnosis of horizontal gaze palsy associated with progressive scoliosis (HGPPS) we could demonstrate by diffusion tensor imaging: (1) An anterior displacement of the transverse pontine fibers; (2) Posterior clumping of the corticospinal, medial lemniscus and central tegmental tracts and of the medial and dorsal longitudinal fasciculi complex; (3) Absent decussation of superior cerebellar peduncle. Those findings can contribute as surrogate markers for the diagnosis.Em dois irmãos com diagnóstico clínico de paralisia do olhar conjugado horizontal associada a escoliose progressiva, foi possível determinar através de imagens por tensores de difusão: (1) Deslocamento anterior das fibras pontinas transversas; (2) Agrupamento posterior do trato córtico-espinhal, lemnisco medial e trato tegmentar central e complexos dos fascículos longitudinais medial e dorsal; (3) Ausência da decussação dos pedúnculos cerebelares superiores. Tais achados podem contribuir como marcadores para o diagnóstico
High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)
The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0
deg with a high missing mass resolution in order to study the Lambda p final
state interaction. The large final state enhancement near the Lambda p
threshold can be described using the standard Jost-function approach. The
singlet and triplet scattering lengths and effective ranges are deduced by
fitting simultaneously the Lambda p invariant mass spectrum and the total cross
section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure
Electron-Phonon interaction and electronic decoherence in molecular conductors
We perform a brief but critical review of the Landauer picture of transport
that clarifies how decoherence appears in this approach. On this basis, we
present different models that allow the study of the coherent and decoherent
effects of the interaction with the environment in the electronic transport.
These models are particularly well suited for the analysis of transport in
molecular wires. The effects of decoherence are described through the
D'Amato-Pastawski model that is explained in detail. We also consider the
formation of polarons in some models for the electron-vibrational interaction.
Our quantum coherent framework allows us to study many-body interference
effects. Particular emphasis is given to the occurrence of anti-resonances as a
result of these interferences. By studying the phase fluctuations in these
soluble models we are able to identify inelastic and decoherence effects. A
brief description of a general formulation for the consideration of
time-dependent transport is also presented.Comment: 32 pages, 11 eps figures. To appear in Chemical Physics (Special
Molecular Electronics Number
Liver transplantation for type I and type IV glycogen storage disease
Progressive liver failure or hepatic complications of the primary disease led to orthotopic liver transplantation in eight children with glycogen storage disease over a 9-year period. One patient had glycogen storage disease (GSD) type I (von Gierke disease) and seven patients had type IV GSD (Andersen disease). As previously reported [19], a 16.5-year-old-girl with GSD type I was successfully treated in 1982 by orthotopic liver transplantation under cyclosporine and steroid immunosuppression. The metabolic consequences of the disease have been eliminated, the renal function and size have remained normal, and the patient has lived a normal young adult life. A late portal venous thrombosis was treated successfully with a distal splenorenal shunt. Orthotopic liver transplantation was performed in seven children with type N GSD who had progressive hepatic failure. Two patients died early from technical complications. The other five have no evidence of recurrent hepatic amylopectinosis after 1.1–5.8 postoperative years. They have had good physical and intellectual maturation. Amylopectin was found in many extrahepatic tissues prior to surgery, but cardiopathy and skeletal myopathy have not developed after transplantation. Postoperative heart biopsies from patients showed either minimal amylopectin deposits as long as 4.5 years following transplantation or a dramatic reduction in sequential biopsies from one patient who initially had dense myocardial deposits. Serious hepatic derangement is seen most commonly in types T and IV GSD. Liver transplantation cures the hepatic manifestations of both types. The extrahepatic deposition of abnormal glycogen appears not to be problematic in type I disease, and while potentially more threatening in type IV disease, may actually exhibit signs of regression after hepatic allografting
- …
