1,007 research outputs found
A Relativistic Thomas-Fermi Description of Collective Modes in Droplets of Nuclear Matter
Isoscalar collective modes in a relativistic meson-nucleon system are
investigated in the framework of the time-dependent Thomas-Fermi method. The
energies of the collective modes are determined by solving consistently the
dispersion relations and the boundary conditions. The energy weighted sum rule
satisfied by the model allows the identification of the giant ressonances. The
percentage of the energy weighted sum rule exhausted by the collective modes is
in agreement with experimental data, but the energies come too high.Comment: 21 pages (RevTex) and 2 postscript figures as a compressed uuencode
fil
Reflected Light from Sand Grains in the Terrestrial Zone of a Protoplanetary Disk
We show that grains have grown to ~mm size (sand sized) or larger in the
terrestrial zone (within ~3 AU) of the protoplanetary disk surrounding the 3
Myr old binary star KH 15D. We also argue that the reflected light in the
system reaches us by back scattering off the far side of the same ring whose
near side causes the obscuration.Comment: 22 pages, 5 figures. To be published in Nature, March 13, 2008.
Contains a Supplemen
Modeling the impacts of climate extremes and multiple water uses to support water management in the Icó-Mandantes Bay, Northeast Brazil
The hydropower production, water supply and aquaculture services of the Itaparica Reservoir are of immense importance for the Brazilian Northeast. Uncontrolled water resources consumption (e.g. irrigation, water supply), climate and land use change effects deteriorated the water quantity and quality in the reservoir, leading to socio-economic and environmental problems. In this work, a depth-averaged shallow water model was set up for the Icó-Mandantes Bay, one major branch of the reservoir, using the open TELEMAC-MASCARET system. The aim was to assess the impacts of the newly built water diversion channel, as well as the effects of a flood and tracer transport from an intermittent tributary, both located in the bay. An alternative approach to estimate the water retention times was additionally implemented. The simulations showed that though the diversion channel did not significantly influence the hydrodynamics of the bay, it is necessary to continuously monitor water quality parameters in the withdrawal, especially during rainy periods after droughts, because of the nutrient inputs from the tributary and the overflows of the nearby drainage systems. Management measures adapting to the continuously changing natural conditions and anthropogenic impacts are thus indispensable and the model presented can be a valuable supporting tool for this purpose.BMBF, 01LL0904A, Verbundvorhaben INNOVATE: Nachhaltige Nutzung von Stauseen durch innovative Kopplung von aquatischen und terrestrischen Ökosystemfunktionen - Teilvorhaben 1: Verbundkoordination, Grüne Leber und Ökonomi
COLD GASS, an IRAM Legacy Survey of Molecular Gas in Massive Galaxies: II. The non-universality of the Molecular Gas Depletion Timescale
We study the relation between molecular gas and star formation in a
volume-limited sample of 222 galaxies from the COLD GASS survey, with
measurements of the CO(1-0) line from the IRAM 30m telescope. The galaxies are
at redshifts 0.025<z<0.05 and have stellar masses in the range
10.0<log(M*/Msun)<11.5. The IRAM measurements are complemented by deep Arecibo
HI observations and homogeneous SDSS and GALEX photometry. A reference sample
that includes both UV and far-IR data is used to calibrate our estimates of
star formation rates from the seven optical/UV bands. The mean molecular gas
depletion timescale, tdep(H2), for all the galaxies in our sample is 1 Gyr,
however tdep(H2) increases by a factor of 6 from a value of ~0.5 Gyr for
galaxies with stellar masses of 10^10 Msun to ~3 Gyr for galaxies with masses
of a few times 10^11 Msun. In contrast, the atomic gas depletion timescale
remains contant at a value of around 3 Gyr. This implies that in high mass
galaxies, molecular and atomic gas depletion timescales are comparable, but in
low mass galaxies, molecular gas is being consumed much more quickly than
atomic gas. The strongest dependences of tdep(H2) are on the stellar mass of
the galaxy (parameterized as log tdep(H2)= (0.36+/-0.07)(log M* -
10.70)+(9.03+/-0.99)), and on the specific star formation rate. A single
tdep(H2) versus sSFR relation is able to fit both "normal" star-forming
galaxies in our COLD GASS sample, as well as more extreme starburst galaxies
(LIRGs and ULIRGs), which have tdep(H2) < 10^8 yr. Normal galaxies at z=1-2 are
displaced with respect to the local galaxy population in the tdep(H2) versus
sSFR plane and have molecular gas depletion times that are a factor of 3-5
times longer at a given value of sSFR due to their significantly larger gas
fractions.Comment: Accepted for publication in MNRAS. 19 pages, 11 figure
Gravitational waves: search results, data analysis and parameter estimation
The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity
Recommended from our members
Attribution: how is it relevant for loss and damage policy and practice?
Attribution has become a recurring issue in discussions about Loss and Damage (L&D). In this highly-politicised context, attribution is often associated with responsibility and blame; and linked to debates about liability and compensation. The aim of attribution science, however, is not to establish responsibility, but to further scientific understanding of causal links between elements of the Earth System and society. This research into causality could inform the management of climate-related risks through improved understanding of drivers of relevant hazards, or, more widely, vulnerability and exposure; with potential benefits regardless of political positions on L&D. Experience shows that it is nevertheless difficult to have open discussions about the science in the policy sphere. This is not only a missed opportunity, but also problematic in that it could inhibit understanding of scientific results and uncertainties, potentially leading to policy planning which does not have sufficient scientific evidence to support it. In this chapter, we first explore this dilemma for science-policy dialogue, summarising several years of research into stakeholder perspectives of attribution in the context of L&D. We then aim to provide clarity about the scientific research available, through an overview of research which might contribute evidence about the causal connections between anthropogenic climate change and losses and damages, including climate science, but also other fields which examine other drivers of hazard, exposure, and vulnerability. Finally, we explore potential applications of attribution research, suggesting that an integrated and nuanced approach has potential to inform planning to avert, minimise and address losses and damages. The key messages are
In the political context of climate negotiations, questions about whether losses and damages can be attributed to anthropogenic climate change are often linked to issues of responsibility, blame, and liability.
Attribution science does not aim to establish responsibility or blame, but rather to investigate drivers of change.
Attribution science is advancing rapidly, and has potential to increase understanding of how climate variability and change is influencing slow onset and extreme weather events, and how this interacts with other drivers of risk, including socio-economic drivers, to influence losses and damages.
Over time, some uncertainties in the science will be reduced, as the anthropogenic climate change signal becomes stronger, and understanding of climate variability and change develops.
However, some uncertainties will not be eliminated. Uncertainty is common in science, and does not prevent useful applications in policy, but might determine which applications are appropriate. It is important to highlight that in attribution studies, the strength of evidence varies substantially between different kinds of slow onset and extreme weather events, and between regions. Policy-makers should not expect the later emergence of conclusive evidence about the influence of climate variability and change on specific incidences of losses and damages; and, in particular, should not expect the strength of evidence to be equal between events, and between countries.
Rather than waiting for further confidence in attribution studies, there is potential to start working now to integrate science into policy and practice, to help understand and tackle drivers of losses and damages, informing prevention, recovery, rehabilitation, and transformation
An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper (R)
Background: Accurate determination of the predictive markers human epidermal growth factor receptor 2 (HER2/ERBB2), estrogen receptor (ER/ESR1), progesterone receptor (PgR/PGR), and marker of proliferation Ki67 (MKI67) is indispensable for therapeutic decision making in early breast cancer. In this multicenter prospective study, we addressed the issue of inter- and intrasite reproducibility using the recently developed reverse transcription-quantitative real-time polymerase chain reaction-based MammaTyper (R) test. Methods: Ten international pathology institutions participated in this study and determined messenger RNA expression levels of ERBB2, ESR1, PGR, and MKI67 in both centrally and locally extracted RNA from formalin-fixed, paraffin-embedded breast cancer specimens with the MammaTyper (R) test. Samples were measured repeatedly on different days within the local laboratories, and reproducibility was assessed by means of variance component analysis, Fleiss' kappa statistics, and interclass correlation coefficients (ICCs). Results: Total variations in measurements of centrally and locally prepared RNA extracts were comparable; therefore, statistical analyses were performed on the complete dataset. Intersite reproducibility showed total SDs between 0.21 and 0.44 for the quantitative single-marker assessments, resulting in ICC values of 0.980-0.998, demonstrating excellent agreement of quantitative measurements. Also, the reproducibility of binary single-marker results (positive/negative), as well as the molecular subtype agreement, was almost perfect with kappa values ranging from 0.90 to 1.00. Conclusions: On the basis of these data, the MammaTyper (R) has the potential to substantially improve the current standards of breast cancer diagnostics by providing a highly precise and reproducible quantitative assessment of the established breast cancer biomarkers and molecular subtypes in a decentralized workup.Peer reviewe
Enamel Matrix Derivative Decreases Pyroptosis-Related Genes in Macrophages.
Background: Pyroptosis is a caspase-dependent catabolic process relevant to periodontal disorders for which inflammation is central to the pathophysiology of the disease. Although enamel matrix derivative (EMD) has been applied to support periodontal regeneration, its capacity to modulate the expression of pyroptosis-related genes remains unknown. Considering EMD has anti-inflammatory properties and pyroptosis is linked to the activation of the inflammasome in chronic periodontitis, the question arises whether EMD could reduce pyroptosis signalling. Methods: To answer this question, primary macrophages obtained from murine bone marrow and RAW 264.7 macrophages were primed with EMD before being challenged by lipopolysaccharide (LPS). Cells were then analysed for pyroptosis-signalling components by gene expression analyses, interleukin-1β (IL-1β) immunoassay, and the detection of caspase-1 (CAS1). The release of mitochondrial reactive oxygen species (ROS) was also detected. Results: We report here that EMD, like the inflammasome (NLRP3) and CAS1 specific inhibitors-MCC950 and Ac-YVAD-cmk, respectively-lowered the LPS-induced expression of NLRP3 in primary macrophages (EMD: p = 0.0232; MCC950: p = 0.0426; Ac-YVAD-cmk: p = 0.0317). EMD further reduced the LPS-induced expression of NLRP3 in RAW 264.7 cells (p = 0.0043). There was also a reduction in CAS1 and IL-1β in RAW 264.7 macrophages on the transcriptional level (p = 0.0598; p = 0.0283; respectively), in IL-1β protein release (p = 0.0313), and CAS1 activity. Consistently, EMD, like MCC950 and Ac-YVAD-cmk, diminished the ROS release in activated RAW 264.7 cells. In ST2 murine mesenchymal cells, EMD could not be tested because LPS, saliva, and IL-1β + TNF-α failed to provoke pyroptosis signalling. Conclusion: These findings suggest that EMD is capable of dampening the expression of pyroptosis-related genes in macrophages
Chemotherapy in Cutaneous Melanoma: Is There Still a Role?
Purpose of review: In the preceding decade, the management of metastatic cutaneous melanoma has been revolutionised with the development of highly effective therapies including immune checkpoint inhibitors (specifically CTLA-4 and PD-1 inhibitors) and targeted therapies (BRAF and MEK inhibitors). The role of chemotherapy in the contemporary management of melanoma is undefined.
Recent findings: Extended analyses highlight substantially improved 5-year survival rates of approximately 50% in patients with metastatic melanoma treated with first-line therapies. However, most patients will progress on these first-line treatments. Sequencing of chemotherapy following failure of targeted and immunotherapies is associated with low objective response rates and short progression-free survival, and thus, meaningful benefits to patients are minimal. Chemotherapy has limited utility in the contemporary management of cutaneous melanoma (with a few exceptions, discussed herein) and should not be the standard treatment sequence following failure of first-line therapies. Instead, enrolment onto clinical trials should be standard-of-care in these patients.
Summary: Chemotherapy has limited utility in the contemporary management of cutaneous melanoma (with a few exceptions, discussed herein) and should not be the standard treatment sequence following failure of first-line therapies. Instead, enrolment onto clinical trials should be standard-of-care in these patients
- …
