39 research outputs found

    Mining a Sea of Data: Deducing the Environmental Controls of Ocean Chlorophyll

    Get PDF
    Chlorophyll biomass in the surface ocean is regulated by a complex interaction of physiological, oceanographic, and ecological factors and in turn regulates the rates of primary production and export of organic carbon to the deep ocean. Mechanistic models of phytoplankton responses to climate change require the parameterization of many processes of which we have limited knowledge. We develop a statistical approach to estimate the response of remote-sensed ocean chlorophyll to a variety of physical and chemical variables. Irradiance over the mixed layer depth, surface nitrate, sea-surface temperature, and latitude and longitude together can predict 83% of the variation in log chlorophyll in the North Atlantic. Light and nitrate regulate biomass through an empirically determined minimum function explaining nearly 50% of the variation in log chlorophyll by themselves and confirming that either light or macronutrients are often limiting and that much of the variation in chlorophyll concentration is determined by bottom-up mechanisms. Assuming the dynamics of the future ocean are governed by the same processes at work today, we should be able to apply these response functions to future climate change scenarios, with changes in temperature, nutrient distributions, irradiance, and ocean physics

    Magnetoencephalography (MEG) Data Processing in Epilepsy Patients with Implanted Responsive Neurostimulation (RNS) Devices

    No full text
    Drug-resistant epilepsy (DRE) is often treated with surgery or neuromodulation. Specifically, responsive neurostimulation (RNS) is a widely used therapy that is programmed to detect abnormal brain activity and intervene with tailored stimulation. Despite the success of RNS, some patients require further interventions. However, having an RNS device in situ is a hindrance to the performance of neuroimaging techniques. Magnetoencephalography (MEG), a non-invasive neurophysiologic and functional imaging technique, aids epilepsy assessment and surgery planning. MEG performed post-RNS is complicated by signal distortions. This study proposes an independent component analysis (ICA)-based approach to enhance MEG signal quality, facilitating improved assessment for epilepsy patients with implanted RNS devices. Three epilepsy patients, two with RNS implants and one without, underwent MEG scans. Preprocessing included temporal signal space separation (tSSS) and an automated ICA-based approach with MNE-Python. Power spectral density (PSD) and signal-to-noise ratio (SNR) were analyzed, and MEG dipole analysis was conducted using single equivalent current dipole (SECD) modeling. The ICA-based noise removal preprocessing method substantially improved the signal-to-noise ratio (SNR) for MEG data from epilepsy patients with implanted RNS devices. Qualitative assessment confirmed enhanced signal readability and improved MEG dipole analysis. ICA-based processing markedly enhanced MEG data quality in RNS patients, emphasizing its clinical relevance

    Striate cortex (V1) activity gates awareness of motion

    No full text
    A key question in understanding visual awareness is whether any single cortical area is indispensable. In a transcranial magnetic stimulation experiment, we show that observers' awareness of activity in extrastriate area V5 depends on the amount of activity in striate cortex (V1). From the timing and pattern of effects, we infer that back-projections from extrastriate cortex influence information content in V1, but it is V1 that determines whether that information reaches awareness
    corecore