5,927 research outputs found
Fragmented adipose tissue graft for bone healing: histological and histometric study in rabbits' calvaria
Objective The adipose tissue represents an important reservoir of stem cells. There are few studies in the literature
with which to histologically evaluate whether or not the adipose tissue graft is really a safe option to achieve bone
repair. This study histologically analyzed the effect of fragmented autogenous adipose tissue grafts on bone healing in surgically created, critical-size defects (CSD) in a rabbit's calvaria.
Study design Forty-two New Zealand rabbits were used in this study. CSD that were 15 mm in diameter were created in the calvarium of each animal. The defects were randomly divided into two groups: in Group C (control),
the defect was filled only by a blood clot and, in Group FAT (i.e., fragmented adipose tissue), the defect was filled
with fragmented autogenous adipose tissue grafts. The groups were divided into subgroups (n = 7) for euthanasia
at 7, 15, and 40 days after the procedure had been conducted. Histologic and histometric analyses were performed.
Data were statistically analysed with ANOVA and Tukey's tests (p < 0.05).
Results The amount of bone formation did not show statistically significant differences seven days after the operation,
which indicates that the groups had similar amounts of mineral deposition in the earlier period of the repair. Conversely,
a significant of amount of bone matrix deposition was identified in the FAT group at 15 and 40 days following the operation, both on the border and in the body of the defect. Such an outcome was not found in the control group.
Conclusion In this study, an autologous adipose tissue graft may be considered as likely biomaterial for bone
regeneration, since it positively affected the amount of bone formation in surgically created CSD in the rabbits'
calvaria 40 days after the procedure had been performed. Further investigations with a longer time evaluation are
warranted to determine the effectiveness of autologous adipose tissue graft in the bone healing
Tearing Out the Income Tax by the (Grass)Roots
Landscapes are increasingly fragmented, and conservation programs have started to look at network approaches for maintaining populations at a larger scale. We present an agent-based model of predator–prey dynamics where the agents (i.e. the individuals of either the predator or prey population) are able to move between different patches in a landscaped network. We then analyze population level and coexistence probability given node-centrality measures that characterize specific patches. We show that both predator and prey species benefit from living in globally well-connected patches (i.e. with high closeness centrality). However, the maximum number of prey species is reached, on average, at lower closeness centrality levels than for predator species. Hence, prey species benefit from constraints imposed on species movement in fragmented landscapes since they can reproduce with a lesser risk of predation, and their need for using anti-predatory strategies decreases.authorCount :
Unexpected features of branched flow through high-mobility two-dimensional electron gases
GaAs-based two-dimensional electron gases (2DEGs) show a wealth of remarkable
electronic states, and serve as the basis for fast transistors, research on
electrons in nanostructures, and prototypes of quantum-computing schemes. All
these uses depend on the extremely low levels of disorder in GaAs 2DEGs, with
low-temperature mean free paths ranging from microns to hundreds of microns.
Here we study how disorder affects the spatial structure of electron transport
by imaging electron flow in three different GaAs/AlGaAs 2DEGs, whose mobilities
range over an order of magnitude. As expected, electrons flow along narrow
branches that we find remain straight over a distance roughly proportional to
the mean free path. We also observe two unanticipated phenomena in
high-mobility samples. In our highest-mobility sample we observe an almost
complete absence of sharp impurity or defect scattering, indicated by the
complete suppression of quantum coherent interference fringes. Also, branched
flow through the chaotic potential of a high-mobility sample remains stable to
significant changes to the initial conditions of injected electrons.Comment: 22 pages, 4 figures, 1 tabl
High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)
The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0
deg with a high missing mass resolution in order to study the Lambda p final
state interaction. The large final state enhancement near the Lambda p
threshold can be described using the standard Jost-function approach. The
singlet and triplet scattering lengths and effective ranges are deduced by
fitting simultaneously the Lambda p invariant mass spectrum and the total cross
section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure
RACE-OC Project: Rotation and variability in young stellar associations within 100 pc
Our goal is to determine the rotational and magnetic-related activity
properties of stars at different stages of evolution. We have focussed our
attention on 6 young loose stellar associations within 100 pc and ages in the
range 8-70 Myr: TW Hydrae (~8 Myr), beta Pictoris (~10 Myr), Tucana/Horologium,
Columba, Carina (~30 Myr), and AB Doradus (~70 Myr). Additional data on alpha
Persei and the Pleiades from the literature is also considered. Rotational
periods of stars showing rotational modulation due to photospheric magnetic
activity (i.e. starspots) have been determined applying the Lomb-Scargle
periodogram technique to photometric time-series obtained by the All Sky
Automated Survey (ASAS). The magnetic activity level has been derived from the
amplitude of the V lightcurves. We detected the rotational modulation and
measured the rotation periods of 93 stars for the first time, and confirmed the
periods of 41 stars already known from the literature. For further 10 stars we
revised the period determinations by other authors. The sample was augmented
with periods of 21 additional stars retrieved from the literature. In this way,
for the first time we were able to determine largest set of rotation periods at
ages of ~8, ~10 and ~30 Myr, as well as increase by 150\% the number of known
periodic members of AB Dor.The analysis of the rotation periods in young
stellar associations, supplemented by Orion Nebula Cluster (ONC) and NGC2264
data from the literature, has allowed us to find that in the 0.6 - 1.2 solar
masses range the most significant variations of the rotation period
distribution are the spin-up between 9 and 30 Myr and the spin-down between 70
and 110 Myr. Variations between 30 and 70 Myr are rather doubtful, despite the
median period indicates a significant spin-up.Comment: Accepted by Astronomy and Astrophysic
Novel insights into host-fungal pathogen interactions derived from live-cell imaging
Acknowledgments The authors acknowledge funding from the Wellcome Trust (080088, 086827, 075470 and 099215) including a Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377 and FP7-2007–2013 grant agreement HEALTH-F2-2010-260338–ALLFUN to NARG.Peer reviewedPublisher PD
Parameterization Effects in the analysis of AMI Sunyaev-Zel'dovich Observations
Most Sunyaev--Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to
constrain the cluster total mass and/or gas mass using parameterised models and
assumptions of spherical symmetry and hydrostatic equilibrium. By numerically
exploring the probability distributions of the cluster parameters given the
simulated interferometric SZ data in the context of Bayesian methods, and
assuming a beta-model for the electron number density we investigate the
capability of this model and analysis to return the simulated cluster input
quantities via three rameterisations. In parameterisation I we assume that the
T is an input parameter. We find that parameterisation I can hardly constrain
the cluster parameters. We then investigate parameterisations II and III in
which fg(r200) replaces temperature as a main variable. In parameterisation II
we relate M_T(r200) and T assuming hydrostatic equilibrium. We find that
parameterisation II can constrain the cluster physical parameters but the
temperature estimate is biased low. In parameterisation III, the virial theorem
replaces the hydrostatic equilibrium assumption. We find that parameterisation
III results in unbiased estimates of the cluster properties. We generate a
second simulated cluster using a generalised NFW (GNFW) pressure profile and
analyse it with an entropy based model to take into account the temperature
gradient in our analysis and improve the cluster gas density distribution. This
model also constrains the cluster physical parameters and the results show a
radial decline in the gas temperature as expected. The mean cluster total mass
estimates are also within 1 sigma from the simulated cluster true values.
However, we find that for at least interferometric SZ analysis in practice at
the present time, there is no differences in the AMI visibilities between the
two models. This may of course change as the instruments improve.Comment: 19 pages, 13 tables, 24 figure
Upper limits for a narrow resonance in the reaction p + p -> K^+ + (Lambda p)
The reaction pp -> K^+ + (Lambda p) has been measured at T_p = 1.953 GeV and
\Theta = 0 deg with a high missing mass resolution in order to study the Lambda
p final state interaction. Narrow S = -1 resonances predicted by bag model
calculations are not visible in the missing mass spectrum. Small structures
observed in a previous experiment are not confirmed. Upper limits for the
production cross section of a narrow resonance are deduced for missing masses
between 2058 and 2105 MeV/c^2.Comment: 8 pages, 5 figure
The Fungal Cell Wall : Structure, Biosynthesis, and Function
N.G. is funded by the Wellcome Trust via a senior investigator award and a strategic award and by the MRC Centre for Medical Mycology. C.M. acknowledges the support of the Wellcome Trust and the MRC. N.G. and C.M. are part of the MRC Centre for Medical Mycology. J.P.L. acknowledges support from ANR, Aviesan, and FRM.Peer reviewedPublisher PD
Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
Peer reviewedPublisher PD
- …
