42 research outputs found

    Activity patterns of free-ranging koalas (Phascolarctos cinereus) revealed by accelerometry

    Get PDF
    An understanding of koala activity patterns is important for measuring the behavioral response of this species to environmental change, but to date has been limited by the logistical challenges of traditional field methodologies. We addressed this knowledge gap by using tri-axial accelerometer data loggers attached to VHF radio collars to examine activity patterns of adult male and female koalas in a high-density population at Cape Otway, Victoria, Australia. Data were obtained from 27 adult koalas over two 7-d periods during the breeding season: 12 in the early-breeding season in November 2010, and 15 in the late-breeding season in January 2011. Multiple 15 minute observation blocks on each animal were used for validation of activity patterns determined from the accelerometer data loggers. Accelerometry was effective in distinguishing between inactive (sleeping, resting) and active (grooming, feeding and moving) behaviors. Koalas were more active during the early-breeding season with a higher index of movement (overall dynamic body acceleration [ODBA]) for both males and females. Koalas showed a distinct temporal pattern of behavior, with most activity occurring from mid-afternoon to early morning. Accelerometry has potential for examining fine-scale behavior of a wide range of arboreal and terrestrial species

    Short interspersed nuclear element (SINE) sequences in the genome of the human pathogenic fungus Aspergillus fumigatus Af293.

    Get PDF
    Copyright: © 2016 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Kanhayuwa L, Coutts RHA (2016) Short Interspersed Nuclear Element (SINE) Sequences in the Genome of the Human Pathogenic Fungus Aspergillus fumigatus Af293. PLoS ONE 11(10): e0163215. https://doi.org/10.1371/journal.pone.0163215.Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4-14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140-493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3'-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50-65% and 60-75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259-343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity.Peer reviewedFinal Published versio

    Competition between Phytophthora infestans Effectors Leads to Increased Aggressiveness on Plants Containing Broad-Spectrum Late Blight Resistance

    Get PDF
    BACKGROUND: The destructive plant disease potato late blight is caused by the oomycete pathogen Phytophthora infestans (Mont.) de Bary. This disease has remained particularly problematic despite intensive breeding efforts to integrate resistance into cultivated potato, largely because of the pathogen's ability to quickly evolve to overcome major resistance genes. The RB gene, identified in the wild potato species S. bulbocastanum, encodes a protein that confers broad-spectrum resistance to most P. infestans isolates through its recognition of highly conserved members of the corresponding pathogen effector family IPI-O. IpiO is a multigene family of effectors and while the majority of IPI-O proteins are recognized by RB to elicit host resistance, some variants exist that are able to elude detection (e.g. IPI-O4). METHODS AND FINDINGS: In the present study, analysis of ipiO variants among 40 different P. infestans isolates collected from Guatemala, Thailand, and the United States revealed a high degree of complexity within this gene family. Isolate aggressiveness was correlated with increased ipiO diversity and especially the presence of the ipiO4 variant. Furthermore, isolates expressing IPI-O4 overcame RB-mediated resistance in transgenic potato plants even when the resistance-eliciting IPI-O1 variant was present. In support of this finding, we observed that expression of IPI-O4 via Agrobacterium blocked recognition of IPI-O1, leading to inactivation of RB-mediated programmed cell death in Nicotiana benthamiana. CONCLUSIONS: In this study we definitively demonstrate and provide the first evidence that P. infestans can defeat an R protein through inhibition of recognition of the corresponding effector protein

    Genomic comparisons reveal biogeographic and anthropogenic impacts in the koala (Phascolarctos cinereus): a dietary-specialist species distributed across heterogeneous environments

    Get PDF
    The Australian koala is an iconic marsupial with highly specific dietary requirements distributed across heterogeneous environments, over a large geographic range. The distribution and genetic structure of koala populations has been heavily influenced by human actions, specifically habitat modification, hunting and translocation of koalas. There is currently limited information on population diversity and gene flow at a species-wide scale, or with consideration to the potential impacts of local adaptation. Using species-wide sampling across heterogeneous environments, and high-density genome-wide markers (SNPs and PAVs), we show that most koala populations display levels of diversity comparable to other outbred species, except for those populations impacted by population reductions. Genetic clustering analysis and phylogenetic reconstruction reveals a lack of support for current taxonomic classification of three koala subspecies, with only a single evolutionary significant unit supported. Furthermore, similar to 70% of genetic variance is accounted for at the individual level. The Sydney Basin region is highlighted as a unique reservoir of genetic diversity, having higher diversity levels (i.e., Blue Mountains region; AvHe(corr)-0.20, PL% = 68.6). Broad-scale population differentiation is primarily driven by an isolation by distance genetic structure model (49% of genetic variance), with clinal local adaptation corresponding to habitat bioregions. Signatures of selection were detected between bioregions, with no single region returning evidence of strong selection. The results of this study show that although the koala is widely considered to be a dietary-specialist species, this apparent specialisation has not limited the koala's ability to maintain gene flow and adapt across divergent environments as long as the required food source is available

    Does zonation and accessibility of wetlands influence human presence and mediate wildlife disturbance?

    No full text
    Zoning is one approach to managing human occurrence and reducing deleterious interactions between humans and wildlife. We investigated the occurrence of humans, and the responses of eight waterbird species to humans, at a major wetland/treatment plant/birdwatching destination. Human occurrence in three zones (‘open birdwatching’, ‘limited birdwatching’ and ‘restricted access’) was monitored using GPS tracking of visitor vehicles, surveys, geotagged social media uploads and remotely triggered cameras (on primary and secondary roadways). A higher diversity (but not frequency) of vehicle types and more walkers, more social media uploads, and greater usage occurred in zones in which birdwatching was permitted. Vehicles were less common and diverse on secondary roads, suggesting accessibility influenced human occurrence. Bird responsiveness to humans was similar across zones, perhaps because people were ubiquitous or because birds were mobile. Wildlife disturbance studies which use space-experience substitution designs are cautioned to test their assumptions regarding patterns of human visitation.</p
    corecore