48 research outputs found

    Simulating alternative sustainable water futures

    No full text
    In the United States of America, urban areas of the arid Southwest are prone to drought risk and changing precipitation patterns; future water supplies are uncertain. A collaborative working group of researchers and practitioners developed alternative future scenarios for 2060—sustainable water futures—that incorporate standard and novel water-adaptation strategies for the Phoenix metropolitan area (hereafter “Phoenix”) in central Arizona, USA. The authors adapted WaterSim-6, a water policy and planning model, to explore differences in water demand and supply for three scenarios as influenced by (1) runoff from the rivers that supply surface water to Phoenix, (2) population growth, (3) water use efficiency, (4) annual rainfall, and (5) land-cover land-use changes. Centralized water-management strategies (direct and indirect potable water reuse and reclaimed supplies) and decentralized strategies (rainwater harvesting and greywater use) were explored. We observed decreased reliance on surface water supplies, offset by increased municipal groundwater pumping in the Strategic scenario, but by alternative water supplies (non-potable water sources including greywater, reclaimed water, and rainwater harvested) in the Desert Wetland and Almost Zero Waste (AZW) scenarios. Even under modest policy implementation and service-connection adoption rates associated with our Strategic scenario, by 2060 alternative supplies from non-potable sources could offset 30% or more of outdoor water demand. Aggressive policy implementations associated with the AZW scenario suggest that up to 80% of outdoor water demand could likewise be met. The WaterSim platform combined with co-produced future scenarios illuminates tradeoffs in support of decision making for long-term sustainability of a water-limited region

    Reproductive Behavior and Sexual Selection

    No full text

    Analysis of Volatile Compounds and Their Contribution to Flavor in Cereals

    No full text

    EDGE2D-EIRENE simulations of the influence of isotope effects and anomalous transport coefficients on near scrape-off layer radial electric field

    No full text
    EDGE2D-EIRENE (the 'code') simulations show that radial electric field, Er, in the near scrape-off layer (SOL) of tokamaks can have large variations leading to a strong local E x B shear greatly exceeding that in the core region. This was pointed out in simulations of JET plasmas with varying divertor geometry, where the magnetic configuration with larger predicted near SOL E-r was found to have lower H-mode power threshold, suggesting that turbulence suppression in the SOL by local E. x. B shear can be a player in the L-H transition physics (Delabie et al 2015 42nd EPS Conf. on Plasma Physics (Lisbon, Portugal, 22-26 June 2015) paper O3.113 (http://ocs.ciemat.es/EPS2015PAP/pdf/O3.113.pdf), Chankin et al 2017 Nucl. Mater. Energy 12 273). Further code modeling of JET plasmas by changing hydrogen isotopes (H-D-T) showed that the magnitude of the near SOL E-r is lower in H cases in which the H-mode threshold power is higher (Chankin et al 2017 Plasma Phys. Control. Fusion 59 045012). From the experiment it is also known that hydrogen plasmas have poorer particle and energy confinement than deuterium plasmas, consistent with the code simulation results showing larger particle diffusion coefficients at the plasma edge, including SOL, in hydrogen plasmas (Maggi et al 2018 Plasma Phys. Control. Fusion 60 014045). All these experimental observations and code results support the hypothesis that the near SOL E x B shear can have an impact on the plasma confinement. The present work analyzes neutral ionization patterns of JET plasmas with different hydrogen isotopes in L-mode cases with fixed input power and gas puffing rate, and its impact on target electron temperature, T-e, and SOL E-r. The possibility of a self-feeding mechanism for the increase in the SOL E-r via the interplay between poloidal E x B drift and target T-e is discussed. It is also shown that reducing anomalous turbulent transport coefficients, particle diffusion and electron and ion heat conductivities, leads to higher peak target T-e and larger E-r, suggesting the possibility of a positive feedback loop, under an implicitly made assumption that the E x B shear in the SOL is capable of suppressing turbulence
    corecore