568 research outputs found
Molecular and physiological evidence for the methane oxidation capability of <em>Crenothrix polyspora</em> COHN
Nitrifying and heterotrophic population dynamics in biofilm reactors: effects of hydraulic retention time and the presence of organic carbon
Two biofilmreactors operated with hydraulic retention times of 0.8 and 5.0 h were used to study the links between
population dynamics and reactor operation performance during a shift in process operation from pure nitrification to
combined nitrification and organic carbon removal. The ammonium and the organic carbon loads were identical for
both reactors. The composition and dynamics of the microbial consortia were quantified by fluorescence in situ
hybridization (FISH) with rRNA-targeted oligonucleotide probes combined with confocal laser scanning microscopy,
and digital image analysis. In contrast to past research, after addition of acetate as organic carbon nitrification
performance decreased more drastically in the reactor with longer hydraulic retention time. FISH analysis showed that
this effect was caused by the unexpected formation of a heterotrophic microorganism layer on top of the nitrifying
biofilm that limited nitrifiers oxygen supply. Our results demonstrate that extension of the hydraulic retention time
might be insufficient to improve combined nitrification and organic carbon removal in biofilm reactors.Ministério da Ciência, Tecnologia e Ensino Superior. Fundação para a Ciência e a Tecnologia (FCT) - PRAXIS XXI BD/15943/98).
Deutscher Akademischer Austauschdienst (A/99/06961).
European Comission - T.M.R. BioToBio project.
Deutsche Forschungsgemeinschaft
Effects of UV-B radiation on the structural and physiological diversity of bacterioneuston and bacterioplankton
The effects of UV radiation (UVR) on estuarine bacterioneuston and bacterioplankton were assessed in microcosm experiments. Bacterial abundance and DNA synthesis were more affected in bacterioplankton. Protein synthesis was more inhibited in bacterioneuston. Community analysis indicated that UVR has the potential to select resistant bacteria (e.g., Gammaproteobacteria), particularly abundant in bacterioneuston
Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts
A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts
Wind environment evaluation on major town of Malaysia
This study focus on wind flow or wind environment of residential areas in Peninsular Malaysia, Sabah and Sarawak. Natural wind flow is one of the most effective methods to help achieve the energy saving in large cities especially under the tropical climate like Malaysia. The weather in Malaysia is characterized by four monsoon regimes, namely, the southwest monsoon, northeast monsoon and two shorter periods of inter-monsoon seasons. For this study, the data of wind velocity in twentytwo (22) weather station in Malaysia obtained from Meteorological Department and considered in wind environment evaluations. Then that data of wind velocities will
convert to 1.5
in height at all measuring points were calculated by using the
law. The result compared by Table 2.2 in previous researches (Kubota and Miura et al.,
2002). From the study, it was found out, in Malaysia there are only two type of wind. First type is weak wind means that area are discomfort thermal and the second type is comfort range to strong wind means that area are comfort thermal. The minimum value
of mean wind speed from 2005 to 2009 is O.mis in mean temperature is over 2C at Sitiawan. For the maximum value of mean wind speed is I .7m/s in average value of
mean temperature is 276C
at Mersing. Base on results, it can be concluded that when considering wind flow at a residential area, terrace housing is not a suitable option for towns located on the south of the Peninsular. It was prefer for high-rise building because it was considered this location of towns was weak wind condition. On the other hand, the major towns exclude the south of the Peninsular including Sabah and Sarawak, they was under the comfort thermal. So, terrace housing or high-rise building is suitable
option
Recommended from our members
An in vitro approach to study effects of prebiotics and probiotics on the faecal microbiota and selected immune parameters relevant to the elderly
The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters
Study of 16 Portuguese activated sludge systems based on filamentous bacteria populations and their relationships with environmental parameters
A survey in 16 activated sludge waste water treatment plants (WWTP) was conducted to contribute to the knowledge of the environmental parameters that determine the composition of the filamentous community. A total of 128 samples of mixed liquor from municipal WWTP were collected during 2 years, and 22 filamentous morphotypes were identified. The most frequent and abundant filamentous bacteria were, in both cases and by this order, type 0041/0675, type 0092, Microthrix parvicella and 1851, nocardioforms and Haliscomenobacter hydrossis. Concerning dominance, type 1851 was the most frequently dominant morphotype, followed by M. parvicella and types 0092 and 0041/0675. These were also, and by this order, the dominant morphotypes during bulking occurrences. Significant correlations were obtained between the abundance of filamentous bacteria and environmental parameters, but multivariate statistical analysis only confirmed the correlation between type 0092 and Sludge Volume Index (SVI), emphasizing the association of this filament with bulking. The discussion of the results in light of published works was complicated by the random use of terms such as frequency, abundance, and dominance with different and often unclear meanings. This reinforces the need of clarifying these terms when discussing the causes of filamentous overgrowth in WWTP.Portuguese Foundation for Science and Technology (FCT) and the European Community fund FEDER, through Program COMPETE, in the ambit of the Projects
FCOMP-01-0124-FEDER-007025 (PTDC/AMB/68393/2006), PEst-OE/EQB/LA0023/2013, RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462), and the Project BBioEnv - Biotechnology and
Bioengineering for a sustainable world,REF. NORTE-07-0124-
FEDER-000048, co-funded by the Programa Operacional Regional do
Norte (ON.2 – O Novo Norte), QREN, FEDER. PhD grant SFRH/BD/64848/200
From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists
The microbiota of multi-pond solar salterns around the world has been analyzed using a variety of culture-dependent and molecular techniques. However, studies addressing the dynamic nature of these systems are very scarce. Here we have characterized the temporal variation during 1 year of the microbiota of five ponds with increasing salinity (from 18% to >40%), by means of CARD-FISH and DGGE. Microbial community structure was statistically correlated with several environmental parameters, including ionic composition and meteorological factors, indicating that the microbial community was dynamic as specific phylotypes appeared only at certain times of the year. In addition to total salinity, microbial composition was strongly influenced by temperature and specific ionic composition. Remarkably, DGGE analyses unveiled the presence of most phylotypes previously detected in hypersaline systems using metagenomics and other molecular techniques, such as the very abundant Haloquadratum and Salinibacter representatives or the recently described low GC Actinobacteria and Nanohaloarchaeota. In addition, an uncultured group of Bacteroidetes was present along the whole range of salinity. Database searches indicated a previously unrecognized widespread distribution of this phylotype. Single-cell genome analysis of five members of this group suggested a set of metabolic characteristics that could provide competitive advantages in hypersaline environments, such as polymer degradation capabilities, the presence of retinal-binding light-activated proton pumps and arsenate reduction potential. In addition, the fairly high metagenomic fragment recruitment obtained for these single cells in both the intermediate and hypersaline ponds further confirm the DGGE data and point to the generalist lifestyle of this new Bacteroidetes group.This work was supported by the projects CGL2012-39627-C03-01 and 02 of the Spanish Ministry of Economy and Competitiveness, which were also co-financed with FEDER support from the European Union. TG group research is funded in part by a grant from the Spanish Ministry of Economy and Competitiveness (BIO2012-37161), a grant from the Qatar National Research Fund grant (NPRP 5-298-3-086) and a grant from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC (grant agreement no. ERC-2012-StG-310325)
Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment : a review
Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.The authors acknowledge the financial support to the project PTDC/EBB-EBI/103147/2008 and the grant SFRH/BPD/48962/2008 provided by Fundacao para a Ciencia e Tecnologia (Portugal)
The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts
© 2015 International Society for Microbial Ecology All rights reserved. Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse hostassociated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes
- …
