20 research outputs found
Probing the Local Velocity Distribution of WIMP Dark Matter with Directional Detectors
We explore the ability of directional nuclear-recoil detectors to constrain
the local velocity distribution of weakly interacting massive particle (WIMP)
dark matter by performing Bayesian parameter estimation on simulated
recoil-event data sets. We discuss in detail how directional information, when
combined with measurements of the recoil-energy spectrum, helps break
degeneracies in the velocity-distribution parameters. We also consider the
possibility that velocity structures such as cold tidal streams or a dark disk
may also be present in addition to the Galactic halo. Assuming a
carbon-tetrafluoride detector with a 30-kg-yr exposure, a 50-GeV WIMP mass, and
a WIMP-nucleon spin-dependent cross-section of 0.001 pb, we show that the
properties of a cold tidal stream may be well constrained. However, measurement
of the parameters of a dark-disk component with a low lag speed of ~50 km/s may
be challenging unless energy thresholds are improved.Comment: 38 pages, 15 figure
Performance of the Hamamatsu R11410 photomultiplier tube in cryogenic xenon environments
The Hamamatsu R11410 photomultiplier, a tube of 3'' diameter and with a very low intrinsic radioactivity, is an interesting light sensor candidate for future experiments using liquid xenon (LXe) as target for direct dark matter searches. We have performed several experiments with the R11410 with the goal of testing its performance in environments similar to a dark matter detector setup. In particular, we examined its long-term behavior and stability in LXe and its response in various electric field configurations
Performance of the Hamamatsu R11410 photomultiplier tube in cryogenic xenon environments
The Hamamatsu R11410 photomultiplier, a tube of 3'' diameter and with a very low intrinsic radioactivity, is an interesting light sensor candidate for future experiments using liquid xenon (LXe) as target for direct dark matter searches. We have performed several experiments with the R11410 with the goal of testing its performance in environments similar to a dark matter detector setup. In particular, we examined its long-term behavior and stability in LXe and its response in various electric field configurations
