378,883 research outputs found

    Collective force generated by multiple biofilaments can exceed the sum of forces due to individual ones

    Full text link
    Collective dynamics and force generation by cytoskeletal filaments are crucial in many cellular processes. Investigating growth dynamics of a bundle of N independent cytoskeletal filaments pushing against a wall, we show that chemical switching (ATP/GTP hydrolysis) leads to a collective phenomenon that is currently unknown. Obtaining force-velocity relations for different models that capture chemical switching, we show, analytically and numerically, that the collective stall force of N filaments is greater than N times the stall force of a single filament. Employing an exactly solvable toy model, we analytically prove the above result for N=2. We, further, numerically show the existence of this collective phenomenon, for N>=2, in realistic models (with random and sequential hydrolysis) that simulate actin and microtubule bundle growth. We make quantitative predictions for the excess forces, and argue that this collective effect is related to the non-equilibrium nature of chemical switching.Comment: New J. Phys., 201

    Studies of dissipative standing shock waves around black holes

    Full text link
    We investigate the dynamical structure of advective accretion flow around stationary as well as rotating black holes. For a suitable choice of input parameters, such as, accretion rate (M˙\dot {\cal M}) and angular momentum (λ\lambda), global accretion solution may include a shock wave. The post shock flow is located at few tens of Schwarzchild radius and it is generally very hot and dense. This successfully mimics the so called Compton cloud which is believed to be responsible for emitting hard radiations. Due to the radiative loss, a significant energy from the accreting matter is removed and the shock moves forward towards the black hole in order to maintain the pressure balance across it. We identify the effective area of the parameter space (M˙λ\dot {\cal M} - \lambda) which allows accretion flows to have some energy dissipation at the shock (ΔE)(\Delta {\cal E}). As the dissipation is increased, the parameter space is reduced and finally disappears when the dissipation is reached its critical value. The dissipation has a profound effect on the dynamics of post-shock flow. By moving forward, an unstable shock whose oscillation causes Quasi-Periodic Oscillations (QPOs) in the emitted radiation, will produce oscillations of high frequency. Such an evolution of QPOs has been observed in several black hole candidates during their outbursts.Comment: 13 pages, 5 figures, accepted by MNRA

    dS/CFT at uniform energy density and a de Sitter "bluewall"

    Get PDF
    We describe a class of spacetimes that are asymptotically de Sitter in the Poincare slicing. Assuming that a dS/CFT correspondence exists, we argue that these are gravity duals to a CFT on a circle leading to uniform energy-momentum density, and are equivalent to an analytic continuation of the Euclidean AdS black brane. These are solutions with a complex parameter which then gives a real energy-momentum density. We also discuss a related solution with the parameter continued to a real number, which we refer to as a de Sitter "bluewall". This spacetime has two asymptotic de Sitter universes and Cauchy horizons cloaking timelike singularities. We argue that the Cauchy horizons give rise to a blue-shift instability.Comment: Latex, 13pgs, 2 figs. v2: 14pgs, published version, some rephrasing of language in terms of Euclidean CFT on a circle, more elaborate discussion on blueshif

    Effect of Random Parameter Switching on Commensurate Fractional Order Chaotic Systems

    Full text link
    The paper explores the effect of random parameter switching in a fractional order (FO) unified chaotic system which captures the dynamics of three popular sub-classes of chaotic systems i.e. Lorenz, Lu and Chen's family of attractors. The disappearance of chaos in such systems which rapidly switch from one family to the other has been investigated here for the commensurate FO scenario. Our simulation study show that a noise-like random variation in the key parameter of the unified chaotic system along with a gradual decrease in the commensurate FO is capable of suppressing the chaotic fluctuations much earlier than that with the fixed parameter one. The chaotic time series produced by such random parameter switching in nonlinear dynamical systems have been characterized using the largest Lyapunov exponent (LLE) and Shannon entropy. The effect of choosing different simulation techniques for random parameter FO switched chaotic systems have also been explored through two frequency domain and three time domain methods. Such a noise-like random switching mechanism could be useful for stabilization and control of chaotic oscillation in many real-world applications.Comment: 31 pages, 17 figures, 5 Table

    Fractional Order Fuzzy Control of Nuclear Reactor Power with Thermal-Hydraulic Effects in the Presence of Random Network Induced Delay and Sensor Noise having Long Range Dependence

    Full text link
    Nonlinear state space modeling of a nuclear reactor has been done for the purpose of controlling its global power in load following mode. The nonlinear state space model has been linearized at different percentage of reactor powers and a novel fractional order (FO) fuzzy proportional integral derivative (PID) controller is designed using real coded Genetic Algorithm (GA) to control the reactor power level at various operating conditions. The effectiveness of using the fuzzy FOPID controller over conventional fuzzy PID controllers has been shown with numerical simulations. The controllers tuned with the highest power models are shown to work well at other operating conditions as well; over the lowest power model based design and hence are robust with respect to the changes in nuclear reactor operating power levels. This paper also analyzes the degradation of nuclear reactor power signal due to network induced random delays in shared communication network and due to sensor noise while being fed-back to the Reactor Regulating System (RRS). The effect of long range dependence (LRD) which is a practical consideration for the stochastic processes like network induced delay and sensor noise has been tackled by optimum tuning of FO fuzzy PID controllers using GA, while also taking the operating point shift into consideration.Comment: 33 pages, 19 figure

    Book Reviews

    Get PDF
    corecore