378,883 research outputs found
Collective force generated by multiple biofilaments can exceed the sum of forces due to individual ones
Collective dynamics and force generation by cytoskeletal filaments are
crucial in many cellular processes. Investigating growth dynamics of a bundle
of N independent cytoskeletal filaments pushing against a wall, we show that
chemical switching (ATP/GTP hydrolysis) leads to a collective phenomenon that
is currently unknown. Obtaining force-velocity relations for different models
that capture chemical switching, we show, analytically and numerically, that
the collective stall force of N filaments is greater than N times the stall
force of a single filament. Employing an exactly solvable toy model, we
analytically prove the above result for N=2. We, further, numerically show the
existence of this collective phenomenon, for N>=2, in realistic models (with
random and sequential hydrolysis) that simulate actin and microtubule bundle
growth. We make quantitative predictions for the excess forces, and argue that
this collective effect is related to the non-equilibrium nature of chemical
switching.Comment: New J. Phys., 201
Studies of dissipative standing shock waves around black holes
We investigate the dynamical structure of advective accretion flow around
stationary as well as rotating black holes. For a suitable choice of input
parameters, such as, accretion rate () and angular momentum
(), global accretion solution may include a shock wave. The post shock
flow is located at few tens of Schwarzchild radius and it is generally very hot
and dense. This successfully mimics the so called Compton cloud which is
believed to be responsible for emitting hard radiations. Due to the radiative
loss, a significant energy from the accreting matter is removed and the shock
moves forward towards the black hole in order to maintain the pressure balance
across it. We identify the effective area of the parameter space () which allows accretion flows to have some energy dissipation at
the shock . As the dissipation is increased, the parameter
space is reduced and finally disappears when the dissipation is reached its
critical value. The dissipation has a profound effect on the dynamics of
post-shock flow. By moving forward, an unstable shock whose oscillation causes
Quasi-Periodic Oscillations (QPOs) in the emitted radiation, will produce
oscillations of high frequency. Such an evolution of QPOs has been observed in
several black hole candidates during their outbursts.Comment: 13 pages, 5 figures, accepted by MNRA
dS/CFT at uniform energy density and a de Sitter "bluewall"
We describe a class of spacetimes that are asymptotically de Sitter in the
Poincare slicing. Assuming that a dS/CFT correspondence exists, we argue that
these are gravity duals to a CFT on a circle leading to uniform energy-momentum
density, and are equivalent to an analytic continuation of the Euclidean AdS
black brane. These are solutions with a complex parameter which then gives a
real energy-momentum density. We also discuss a related solution with the
parameter continued to a real number, which we refer to as a de Sitter
"bluewall". This spacetime has two asymptotic de Sitter universes and Cauchy
horizons cloaking timelike singularities. We argue that the Cauchy horizons
give rise to a blue-shift instability.Comment: Latex, 13pgs, 2 figs. v2: 14pgs, published version, some rephrasing
of language in terms of Euclidean CFT on a circle, more elaborate discussion
on blueshif
Effect of Random Parameter Switching on Commensurate Fractional Order Chaotic Systems
The paper explores the effect of random parameter switching in a fractional
order (FO) unified chaotic system which captures the dynamics of three popular
sub-classes of chaotic systems i.e. Lorenz, Lu and Chen's family of attractors.
The disappearance of chaos in such systems which rapidly switch from one family
to the other has been investigated here for the commensurate FO scenario. Our
simulation study show that a noise-like random variation in the key parameter
of the unified chaotic system along with a gradual decrease in the commensurate
FO is capable of suppressing the chaotic fluctuations much earlier than that
with the fixed parameter one. The chaotic time series produced by such random
parameter switching in nonlinear dynamical systems have been characterized
using the largest Lyapunov exponent (LLE) and Shannon entropy. The effect of
choosing different simulation techniques for random parameter FO switched
chaotic systems have also been explored through two frequency domain and three
time domain methods. Such a noise-like random switching mechanism could be
useful for stabilization and control of chaotic oscillation in many real-world
applications.Comment: 31 pages, 17 figures, 5 Table
Fractional Order Fuzzy Control of Nuclear Reactor Power with Thermal-Hydraulic Effects in the Presence of Random Network Induced Delay and Sensor Noise having Long Range Dependence
Nonlinear state space modeling of a nuclear reactor has been done for the
purpose of controlling its global power in load following mode. The nonlinear
state space model has been linearized at different percentage of reactor powers
and a novel fractional order (FO) fuzzy proportional integral derivative (PID)
controller is designed using real coded Genetic Algorithm (GA) to control the
reactor power level at various operating conditions. The effectiveness of using
the fuzzy FOPID controller over conventional fuzzy PID controllers has been
shown with numerical simulations. The controllers tuned with the highest power
models are shown to work well at other operating conditions as well; over the
lowest power model based design and hence are robust with respect to the
changes in nuclear reactor operating power levels. This paper also analyzes the
degradation of nuclear reactor power signal due to network induced random
delays in shared communication network and due to sensor noise while being
fed-back to the Reactor Regulating System (RRS). The effect of long range
dependence (LRD) which is a practical consideration for the stochastic
processes like network induced delay and sensor noise has been tackled by
optimum tuning of FO fuzzy PID controllers using GA, while also taking the
operating point shift into consideration.Comment: 33 pages, 19 figure
- …
