21,196 research outputs found

    KAPow: A System Identification Approach to Online Per-Module Power Estimation in FPGA Designs

    Get PDF
    In a modern FPGA system-on-chip design, it is often insufficient to simply assess the total power consumption of the entire circuit by design-time estimation or runtime power rail measurement. Instead, to make better runtime decisions, it is desirable to understand the power consumed by each individual module in the system. In this work, we combine boardlevel power measurements with register-level activity counting to build an online model that produces a breakdown of power consumption within the design. Online model refinement avoids the need for a time-consuming characterisation stage and also allows the model to track long-term changes to operating conditions. Our flow is named KAPow, a (loose) acronym for ‘K’ounting Activity for Power estimation, which we show to be accurate, with per-module power estimates as close to ±5mW of true measurements, and to have low overheads. We also demonstrate an application example in which a permodule power breakdown can be used to determine an efficient mapping of tasks to modules and reduce system-wide power consumption by over 8%

    Combinatorial Assortment Optimization

    Full text link
    Assortment optimization refers to the problem of designing a slate of products to offer potential customers, such as stocking the shelves in a convenience store. The price of each product is fixed in advance, and a probabilistic choice function describes which product a customer will choose from any given subset. We introduce the combinatorial assortment problem, where each customer may select a bundle of products. We consider a model of consumer choice where the relative value of different bundles is described by a valuation function, while individual customers may differ in their absolute willingness to pay, and study the complexity of the resulting optimization problem. We show that any sub-polynomial approximation to the problem requires exponentially many demand queries when the valuation function is XOS, and that no FPTAS exists even for succinctly-representable submodular valuations. On the positive side, we show how to obtain constant approximations under a "well-priced" condition, where each product's price is sufficiently high. We also provide an exact algorithm for kk-additive valuations, and show how to extend our results to a learning setting where the seller must infer the customers' preferences from their purchasing behavior

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Probabilistic Analysis of Facility Location on Random Shortest Path Metrics

    Get PDF
    The facility location problem is an NP-hard optimization problem. Therefore, approximation algorithms are often used to solve large instances. Such algorithms often perform much better than worst-case analysis suggests. Therefore, probabilistic analysis is a widely used tool to analyze such algorithms. Most research on probabilistic analysis of NP-hard optimization problems involving metric spaces, such as the facility location problem, has been focused on Euclidean instances, and also instances with independent (random) edge lengths, which are non-metric, have been researched. We would like to extend this knowledge to other, more general, metrics. We investigate the facility location problem using random shortest path metrics. We analyze some probabilistic properties for a simple greedy heuristic which gives a solution to the facility location problem: opening the κ\kappa cheapest facilities (with κ\kappa only depending on the facility opening costs). If the facility opening costs are such that κ\kappa is not too large, then we show that this heuristic is asymptotically optimal. On the other hand, for large values of κ\kappa, the analysis becomes more difficult, and we provide a closed-form expression as upper bound for the expected approximation ratio. In the special case where all facility opening costs are equal this closed-form expression reduces to O(ln(n)4)O(\sqrt[4]{\ln(n)}) or O(1)O(1) or even 1+o(1)1+o(1) if the opening costs are sufficiently small.Comment: A preliminary version accepted to CiE 201

    Varied response to mirror gait retraining of gluteus medius control, hip kinematics, pain, and function in 2 female runners with patellofemoral pain.

    Get PDF
    STUDY DESIGN: Case report. BACKGROUND: The underlying mechanism of the changes in running mechanics after gait retraining is presently unknown. This case report assesses changes in muscle coordination and kinematics during treadmill running and step ascent in 2 female runners with patellofemoral pain after mirror gait retraining. CASE DESCRIPTION: Two female runners with chronic patellofemoral pain underwent 8 sessions of mirror gait retraining during treadmill running. Subjective measures and hip abductor strength were recorded at baseline and after the retraining phase. Changes in hip mechanics and electromyography data of the gluteus medius during treadmill running and step ascent were also assessed. OUTCOMES: Both runners reported improvements in pain and function that were maintained for at least 3 months. During running, peak contralateral pelvic drop (baseline-postretraining difference: runner 1, 2.6° less; runner 2, 1.7° less) and peak hip adduction (baseline-postretraining difference: runner 1, 5.2° less; runner 2, 6.3° less) were reduced after retraining. Kinematic reductions accompanied earlier activation of the gluteus medius relative to foot strike (baseline-postretraining difference: runner 1, 12.6 milliseconds earlier; runner 2, 37.3 milliseconds earlier) and longer duration of gluteus medius activity (runner 1, 55.8 milliseconds longer; runner 2, 44.4 milliseconds longer). Runner 1 transferred reduced contralateral pelvic drop to step ascent, whereas runner 2 did not (contralateral pelvic drop baseline-postretraining difference: runner 1, 3.6° less; runner 2, 1.5° more; hip adduction baseline-postretraining difference: runner 1, 3.0° less; runner 2, 0.5° more). Both runners demonstrated earlier onset of gluteus medius activity during step ascent (baseline-postretraining difference: runner 1, 48.0 milliseconds earlier; runner 2, 28.3 milliseconds earlier), but only runner 1 demonstrated longer activation duration (runner 1, 25.0 milliseconds longer; runner 2, 69.4 milliseconds shorter). DISCUSSION: While changes in hip mechanics and gluteus medius activity during running were consistent with those noted during step ascent for runner 1, runner 2 failed to demonstrate similar consistency between the tasks. Earlier onset and longer duration of gluteus medius activity may have been necessary to alter step mechanics for runner 2. LEVEL OF EVIDENCE: Therapy, level 4. NOTE: This is a non-final version of an article published in final form in Willy, R. W., & Davis, I. S. (2013). Varied response to mirror gait retraining of gluteus medius control, hip kinematics, pain, and function in 2 female runners with patellofemoral pain. The Journal of Orthopaedic and Sports Physical Therapy, 43(12), 864-874. doi:10.2519/jospt.2013.451

    Contemporary medical television and crisis in the NHS

    Get PDF
    This article maps the terrain of contemporary UK medical television, paying particular attention to Call the Midwife as its centrepiece, and situating it in contextual relation to the current crisis in the NHS. It provides a historical overview of UK and US medical television, illustrating how medical television today has been shaped by noteworthy antecedents. It argues that crisis rhetoric surrounding healthcare leading up to the passing of the Health and Social Care Act 2012 has been accompanied by a renaissance in medical television. And that issues, strands and clusters have emerged in forms, registers and modes with noticeable regularity, especially around the value of affective labour, the cultural politics of nostalgia and the neoliberalisation of healthcare

    Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics

    Get PDF
    Simple heuristics often show a remarkable performance in practice for optimization problems. Worst-case analysis often falls short of explaining this performance. Because of this, "beyond worst-case analysis" of algorithms has recently gained a lot of attention, including probabilistic analysis of algorithms. The instances of many optimization problems are essentially a discrete metric space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been conducted on instances drawn from Euclidean space, which provides a structure that is usually heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little work has been done on metric instances drawn from other, more realistic, distributions. Some initial results have been obtained by Bringmann et al. (Algorithmica, 2013), who have used random shortest path metrics on complete graphs to analyze heuristics. The goal of this paper is to generalize these findings to non-complete graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path metric is constructed by drawing independent random edge weights for each edge in the graph and setting the distance between every pair of vertices to the length of a shortest path between them with respect to the drawn weights. For such instances, we prove that the greedy heuristic for the minimum distance maximum matching problem, the nearest neighbor and insertion heuristics for the traveling salesman problem, and a trivial heuristic for the kk-median problem all achieve a constant expected approximation ratio. Additionally, we show a polynomial upper bound for the expected number of iterations of the 2-opt heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201

    Moving from evidence-based medicine to evidence-based health.

    Get PDF
    While evidence-based medicine (EBM) has advanced medical practice, the health care system has been inconsistent in translating EBM into improvements in health. Disparities in health and health care play out through patients' limited ability to incorporate the advances of EBM into their daily lives. Assisting patients to self-manage their chronic conditions and paying attention to unhealthy community factors could be added to EBM to create a broader paradigm of evidence-based health. A perspective of evidence-based health may encourage physicians to consider their role in upstream efforts to combat socially patterned chronic disease
    corecore