13 research outputs found

    Guide to Assembling a Successful K99/R00 Application

    Get PDF
    The National Institutes of Health’s (NIH) K99/R00 Pathway to Independence Award offers promising postdoctoral researchers and clinician-scientists an opportunity to receive research support at both the mentored and the independent levels with the goal of facilitating a timely transition to a tenure-track faculty position. This transitional program has been generally successful, with most K99/R00 awardees successfully securing R01-equivalent funding by the end of the R00 period. However, often highly promising proposals fail because of poor grantsmanship. This overview provides guidance from the perspective of long-standing members of the National Heart, Lung, and Blood Institute’s Mentored Transition to Independence study section for the purpose of helping mentors and trainees regarding how best to assemble competitive K99/R00 applications

    Rapid and robust identification of sepsis using SeptiCyte RAPID in a heterogeneous patient population

    Get PDF
    Background/Objective: SeptiCyte RAPID is a transcriptional host response assay that discriminates between sepsis and non-infectious systemic inflammation (SIRS) with a one-hour turnaround time. The overall performance of this test in a cohort of 419 patients has recently been described [Balk et al., J Clin Med 2024, 13, 1194]. In this study, we present the results from a detailed stratification analysis in which SeptiCyte RAPID performance was evaluated in the same cohort across patient groups and subgroups encompassing different demographics, comorbidities and disease, sources and types of pathogens, interventional treatments, and clinically defined phenotypes. The aims were to identify variables that might affect the ability of SeptiCyte RAPID to discriminate between sepsis and SIRS and to determine if any patient subgroups appeared to present a diagnostic challenge for the test. Methods: (1) Subgroup analysis, with subgroups defined by individual demographic or clinical variables, using conventional statistical comparison tests. (2) Principal component analysis and k-means clustering analysis to investigate phenotypic subgroups defined by unique combinations of demographic and clinical variables. Results: No significant differences in SeptiCyte RAPID performance were observed between most groups and subgroups. One notable exception involved an enhanced SeptiCyte RAPID performance for a phenotypic subgroup defined by a combination of clinical variables suggesting a septic shock response. Conclusions: We conclude that for this patient cohort, SeptiCyte RAPID performance was largely unaffected by key variables associated with heterogeneity in patients suspected of sepsis.peer-reviewe

    Validation of SeptiCyte RAPID to Discriminate Sepsis from Non-Infectious Systemic Inflammation

    Get PDF
    (1) Background: SeptiCyte RAPID is a molecular test for discriminating sepsis from non-infectious systemic inflammation, and for estimating sepsis probabilities. The objective of this study was the clinical validation of SeptiCyte RAPID, based on testing retrospectively banked and prospectively collected patient samples. (2) Methods: The cartridge-based SeptiCyte RAPID test accepts a PAXgene blood RNA sample and provides sample-to-answer processing in ~1 h. The test output (SeptiScore, range 0-15) falls into four interpretation bands, with higher scores indicating higher probabilities of sepsis. Retrospective (N = 356) and prospective (N = 63) samples were tested from adult patients in ICU who either had the systemic inflammatory response syndrome (SIRS), or were suspected of having/diagnosed with sepsis. Patients were clinically evaluated by a panel of three expert physicians blinded to the SeptiCyte test results. Results were interpreted under either the Sepsis-2 or Sepsis-3 framework. (3) Results: Under the Sepsis-2 framework, SeptiCyte RAPID performance for the combined retrospective and prospective cohorts had Areas Under the ROC Curve (AUCs) ranging from 0.82 to 0.85, a negative predictive value of 0.91 (sensitivity 0.94) for SeptiScore Band 1 (score range 0.1-5.0; lowest risk of sepsis), and a positive predictive value of 0.81 (specificity 0.90) for SeptiScore Band 4 (score range 7.4-15; highest risk of sepsis). Performance estimates for the prospective cohort ranged from AUC 0.86-0.95. For physician-adjudicated sepsis cases that were blood culture (+) or blood, urine culture (+)(+), 43/48 (90%) of SeptiCyte scores fell in Bands 3 or 4. In multivariable analysis with up to 14 additional clinical variables, SeptiScore was the most important variable for sepsis diagnosis. A comparable performance was obtained for the majority of patients reanalyzed under the Sepsis-3 definition, although a subgroup of 16 patients was identified that was called septic under Sepsis-2 but not under Sepsis-3. (4) Conclusions: This study validates SeptiCyte RAPID for estimating sepsis probability, under both the Sepsis-2 and Sepsis-3 frameworks, for hospitalized patients on their first day of ICU admission.peer-reviewe

    Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms.

    No full text
    The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment

    Pseudomonas-dominant microbiome elicits sustained IL-1β upregulation in alveolar macrophages from lung transplant recipients

    No full text
    Isolation of Pseudomonas aeruginosa (PsA) is associated with increased BAL (bronchoalveolar lavage) inflammation and lung allograft injury in lung transplant recipients (LTR). However, the effect of PsA on macrophage responses in this population is incompletely understood. We examined human alveolar macrophage (AMΦ) responses to PsA and Pseudomonas dominant microbiome in healthy LTR. We stimulated THP-1 derived macrophages (THP-1MΦ) and human AMΦ from LTR with different bacteria and LTR BAL derived microbiome characterized as Pseudomonas-dominant. Macrophage responses were assessed by high dimensional flow cytometry, including their intracellular production of cytokines (TNF-α, IL-6, IL-8, IL-1β, IL-10, IL-1RA, and TGF-β). Pharmacological inhibitors were utilized to evaluate the role of the inflammasome in PsA-macrophage interaction. We observed upregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-8, IL-1β) following stimulation by PsA compared to other bacteria (Staphylococcus aureus (S.Aur), Prevotella melaninogenica, Streptococcus pneumoniae) in both THP-1MΦ and LTR AMΦ, predominated by IL-1β. IL-1β production from THP-1MΦ was sustained after PsA stimulation for up to 96 hours and 48 hours in LTR AMΦ. Treatment with the inflammasome inhibitor BAY11-7082 abrogated THP-1MΦ IL-1β production after PsA exposure. BAL Pseudomonas-dominant microbiota elicited an increased IL-1β, similar to PsA, an effect abrogated by the addition of antibiotics. PsA and PsA-dominant lung microbiota induce sustained IL-1β production in LTR AMΦ. Pharmacological targeting of the inflammasome reduces PsA-macrophage-IL-1β responses, underscoring their use in lung transplant recipients
    corecore