1,935 research outputs found
Recommended from our members
Endogenous Matching in University-Industry Collaboration: Theory and Empirical Evidence from the United Kingdom
We use a two-sided matching framework to analyze collaboration between heterogeneous academics and firms. We consider both horizontal and vertical characteristics—those related to affinity (e.g., preferences for a type of scientific research) and those related to ability (e.g., capacity to produce high-quality scientific output). We build a unique data set based on the teams of academics and firms that proposed research projects to the UK’s Engineering and Physical Sciences Research Council. Our results are suggestive of positive assortative matching in terms of ability and type, while the matching is negative assortative in terms of their interactions. The most able and the most applied academics are the ones that are more likely to propose collaborative as opposed to noncollaborative projects
Three Dimensional Electrical Impedance Tomography
The electrical resistivity of mammalian tissues varies widely and is correlated with physiological
function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a
non-invasive means of imaging the internal conductivity distribution of the human body. But the
computational complexity of EIT has severe practical limitations, and previous work has been restricted to
considering image reconstruction as an essentially two-dimensional problem. This simplification can limit
significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening
Structural efficiency of percolation landscapes in flow networks
Complex networks characterized by global transport processes rely on the
presence of directed paths from input to output nodes and edges, which organize
in characteristic linked components. The analysis of such network-spanning
structures in the framework of percolation theory, and in particular the key
role of edge interfaces bridging the communication between core and periphery,
allow us to shed light on the structural properties of real and theoretical
flow networks, and to define criteria and quantities to characterize their
efficiency at the interplay between structure and functionality. In particular,
it is possible to assess that an optimal flow network should look like a "hairy
ball", so to minimize bottleneck effects and the sensitivity to failures.
Moreover, the thorough analysis of two real networks, the Internet
customer-provider set of relationships at the autonomous system level and the
nervous system of the worm Caenorhabditis elegans --that have been shaped by
very different dynamics and in very different time-scales--, reveals that
whereas biological evolution has selected a structure close to the optimal
layout, market competition does not necessarily tend toward the most customer
efficient architecture.Comment: 8 pages, 5 figure
A viscoelastic deadly fluid in carnivorous pitcher plants
Background : The carnivorous plants of the genus Nepenthes, widely
distributed in the Asian tropics, rely mostly on nutrients derived from
arthropods trapped in their pitcher-shaped leaves and digested by their
enzymatic fluid. The genus exhibits a great diversity of prey and pitcher forms
and its mechanism of trapping has long intrigued scientists. The slippery inner
surfaces of the pitchers, which can be waxy or highly wettable, have so far
been considered as the key trapping devices. However, the occurrence of species
lacking such epidermal specializations but still effective at trapping insects
suggests the possible implication of other mechanisms. Methodology/Principal
Findings : Using a combination of insect bioassays, high-speed video and
rheological measurements, we show that the digestive fluid of Nepenthes
rafflesiana is highly viscoelastic and that this physical property is crucial
for the retention of insects in its traps. Trapping efficiency is shown to
remain strong even when the fluid is highly diluted by water, as long as the
elastic relaxation time of the fluid is higher than the typical time scale of
insect movements. Conclusions/Significance : This finding challenges the common
classification of Nepenthes pitchers as simple passive traps and is of great
adaptive significance for these tropical plants, which are often submitted to
high rainfalls and variations in fluid concentration. The viscoelastic trap
constitutes a cryptic but potentially widespread adaptation of Nepenthes
species and could be a homologous trait shared through common ancestry with the
sundew (Drosera) flypaper plants. Such large production of a highly
viscoelastic biopolymer fluid in permanent pools is nevertheless unique in the
plant kingdom and suggests novel applications for pest control
Integrated multiple mediation analysis: A robustness–specificity trade-off in causal structure
Recent methodological developments in causal mediation analysis have addressed several issues regarding multiple mediators. However, these developed methods differ in their definitions of causal parameters, assumptions for identification, and interpretations of causal effects, making it unclear which method ought to be selected when investigating a given causal effect. Thus, in this study, we construct an integrated framework, which unifies all existing methodologies, as a standard for mediation analysis with multiple mediators. To clarify the relationship between existing methods, we propose four strategies for effect decomposition: two-way, partially forward, partially backward, and complete decompositions. This study reveals how the direct and indirect effects of each strategy are explicitly and correctly interpreted as path-specific effects under different causal mediation structures. In the integrated framework, we further verify the utility of the interventional analogues of direct and indirect effects, especially when natural direct and indirect effects cannot be identified or when cross-world exchangeability is invalid. Consequently, this study yields a robustness–specificity trade-off in the choice of strategies. Inverse probability weighting is considered for estimation. The four strategies are further applied to a simulation study for performance evaluation and for analyzing the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer data set from Taiwan to investigate the causal effect of hepatitis C virus infection on mortality
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
A search for the decay modes B+/- to h+/- tau l
We present a search for the lepton flavor violating decay modes B+/- to h+/-
tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472
million BBbar pairs. The search uses events where one B meson is fully
reconstructed in one of several hadronic final states. Using the momenta of the
reconstructed B, h, and l candidates, we are able to fully determine the tau
four-momentum. The resulting tau candidate mass is our main discriminant
against combinatorial background. We see no evidence for B+/- to h+/- tau l
decays and set a 90% confidence level upper limit on each branching fraction at
the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.
Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri
The development of systemic approaches in biology has put emphasis on
identifying genetic modules whose behavior can be modeled accurately so as to
gain insight into their structure and function. However most gene circuits in a
cell are under control of external signals and thus quantitative agreement
between experimental data and a mathematical model is difficult. Circadian
biology has been one notable exception: quantitative models of the internal
clock that orchestrates biological processes over the 24-hour diurnal cycle
have been constructed for a few organisms, from cyanobacteria to plants and
mammals. In most cases, a complex architecture with interlocked feedback loops
has been evidenced. Here we present first modeling results for the circadian
clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock
genes have been shown to play a central role in Ostreococcus clock. We find
that their expression time profiles can be accurately reproduced by a minimal
model of a two-gene transcriptional feedback loop. Remarkably, best adjustment
of data recorded under light/dark alternation is obtained when assuming that
the oscillator is not coupled to the diurnal cycle. This suggests that coupling
to light is confined to specific time intervals and has no dynamical effect
when the oscillator is entrained by the diurnal cycle. This intringuing
property may reflect a strategy to minimize the impact of fluctuations in
daylight intensity on the core circadian oscillator, a type of perturbation
that has been rarely considered when assessing the robustness of circadian
clocks
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar
We study the process with
initial-state-radiation events produced at the PEP-II asymmetric-energy
collider. The data were recorded with the BaBar detector at center-of-mass
energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454
. We investigate the mass
distribution in the region from 3.5 to 5.5 . Below 3.7
the signal dominates, and above 4
there is a significant peak due to the Y(4260). A fit to
the data in the range 3.74 -- 5.50 yields a mass value
(stat) (syst) and a width value (stat)(syst) for this state. We do not
confirm the report from the Belle collaboration of a broad structure at 4.01
. In addition, we investigate the system
which results from Y(4260) decay
- …
